Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

(Benzene-1,2,4,5-tetrayl)tetrakis(3-(1-carboxylatomethylpyridinium)), a novel uranyl-complexing tetrazwitterion

Young Hoon Lee A , Sotaro Kusumoto B , Youssef Atoini C , Shinya Hayami D , Yang Kim D * , Jack Harrowfield https://orcid.org/0000-0003-4005-740X E * and Pierre Thuéry F *
+ Author Affiliations
- Author Affiliations

A Department of Chemistry & Energy Harvest Storage Research Centre (EHSRC), University of Ulsan, 12 Tekeunosaneop-ro 55beon-gil, Nam-gu, Ulsan 44776, Republic of Korea.

B Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.

C Technical University of Munich, Campus Straubing, Schulgasse 22, D-94315 Straubing, Germany.

D Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.

E Université de Strasbourg, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, F-67083 Strasbourg, France.

F Université Paris-Saclay, Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Centre national de la recherche scientifique (CNRS), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l’Energie (NIMBE), F-91191 Gif-sur-Yvette, France.


Handling Editor: Stuart Batten

Australian Journal of Chemistry 77, CH24109 https://doi.org/10.1071/CH24109
Submitted: 2 August 2024  Accepted: 29 September 2024  Published online: 22 October 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

The tetrazwitterionic, tetracarboxylate (benzene-1,2,4,5-tetrayl)tetrakis(3-(1-carboxylatomethylpyridinium)) (L) has been synthesized and used as a ligand in mixed-ligand complexes of the uranyl cation involving anionic carboxylates. {[(UO2)2(tdc)2(L)]·2H2O}n (1), where tdc2– is 2,5-thiophenedicarboxylate, crystallizes as a monoperiodic, ladder-like coordination polymer in which two UO2(tdc) rows are bridged by L ligands with monodentate carboxylate groups. {[(UO2)2(OH)4(L)]·2H2O}n (2) is a diperiodic polymer in which the dinuclear (UO2)2(OH)22+ units are the nodes of a square lattice (sql) network and L being bound by its four monodentate carboxylate groups. The positional isomer (benzene-1,2,4,5-tetrayl)tetrakis(4-(1-carboxylatomethylpyridinium)) (L′) undergoes decarboxylation during synthesis under solvo-hydrothermal conditions, giving tetracationic (benzene-1,2,4,5-tetrayl)tetra{4-(N-methylpyridinium)} (btp4+) included as a counterion in [btp][(UO2)4(O)2(pht)4]·1.5H2O (3), where pht2– is phthalate. The discrete, tetranuclear complexes in 3 are of the usual form with two μ3-oxo bridges and rows of alternating anions and cations linked through π–π interactions arranged into layers.

Keywords: carboxylate donors, crystal structures, square lattice network, tetracarboxylate, tetracationic counterion, tetrazwitterion, tetrazwitterionic ligand, uranyl ion complexes, uranyl complex.

References

Baklouti L, Harrowfield J. Oligozwitterions in coordination polymers and frameworks – a structural view. Dalton Trans 2023; 52: 7772-7786.
| Crossref | Google Scholar | PubMed |

Thuéry P, Harrowfield J. Bifunctional ligands in uranyl chemistry: metalloligands and zwitterions. Coord Chem Rev 2024; 510: 215821.
| Crossref | Google Scholar |

Thuéry P. The first crystal structure of an actinide complex of the macrocyclic ligand DOTA: a two-dimensional uranyl–organic framework. CrystEngComm 2008; 10: 808-810.
| Crossref | Google Scholar |

Martin NP, Falaise C, Volkringer C, Henry N, Farger P, Falk C, Delahaye E, Rabu P, Loiseau T. Hydrothermal crystallization of uranyl coordination polymers involving an imidazolium dicarboxylate ligand: effect of pH on the nuclearity of uranyl-centered subunits. InorgChem 2016; 55: 8697-8705.
| Crossref | Google Scholar | PubMed |

Mei L, Xie ZN, Hu KQ, Yuan LY, Gao ZQ, Chai ZF, Shi WQ. Supramolecular host–guest inclusion for distinguishing cucurbit[7]uril-based pseudorotaxanes from small-molecule ligands in coordination assembly with a uranyl center. Chemistry 2017; 23: 13995-14003.
| Crossref | Google Scholar | PubMed |

Wu S, Mei L, Hu KQ, Chai ZF, Nie CM, Shi WQ. pH-Dependent synthesis of octa-nuclear uranyl-oxalate network mediated by U-shaped linkers. J Inorg Mater 2020; 35: 243-256.
| Crossref | Google Scholar |

Meng Y, Xie Z, Lan Q, Niu F, Zhang X, Yang Y, Cai B. The crystal structure of catena-poly[(1-(4-carboxybenzyl)pyridin-1-ium-4-carboxylato-κ1O)-(μ2-oxalato-κ4 O:O′:O″:O‴)dioxidouranium(VI)],C16H11NO10U. Z Kristallogr – New Cryst Struct 2022; 237: 153-155.
| Crossref | Google Scholar |

Serezhkina LB, Grigoriev MS, Rogaleva EF, Serezhkin VN. Synthesis and structure of uranyl succinate complex with isonicotinic acid and new polymorph of uranyl succinate monohydrate. Radiochem 2021; 63: 428-438.
| Crossref | Google Scholar |

Jayasinghe AS, Applegate LC, Unruh DK, Hutton J, Forbes TZ. Utilizing autoxidation of solvents to promote the formation of uranyl peroxide materials. CrystGrowth Des 2019; 19: 1756-1766.
| Crossref | Google Scholar |

10  Zeng LW, Hu KQ, Mei L, Li FZ, Huang ZW, An SW, Chai ZF, Shi WQ. Structural diversity of bipyridinium-based uranyl coordination polymers: synthesis, characterization, and ion-exchange application. Inorg Chem 2019; 58: 14075-14084.
| Crossref | Google Scholar | PubMed |

11  Kusumoto S, Atoini Y, Masuda S, Koide Y, Kim JY, Hayami S, Kim Y, Harrowfield J, Thuéry P. Varied role of organic carboxylate dizwitterions and anionic donors in mixed-ligand uranyl ion coordination polymers. CrystEngComm 2022; 24: 7833-7844.
| Crossref | Google Scholar |

12  Kusumoto S, Atoini Y, Masuda S, Kim JY, Hayami S, Kim Y, Harrowfield J, Thuéry P. Zwitterionic and anionic polycarboxylates as coligands in uranyl ion complexes, and their influence on periodicity and topology. Inorg Chem 2022; 61: 15182-15203.
| Crossref | Google Scholar | PubMed |

13  Kusumoto S, Atoini Y, Masuda S, Koide Y, Kim JY, Hayami S, Kim Y, Harrowfield J, Thuéry P. Flexible aliphatic diammonioacetates as zwitterionic ligands in UO22+ complexes: diverse topologies and interpenetrated structures. Inorg Chem 2023; 62: 3929-3946.
| Crossref | Google Scholar | PubMed |

14  Kusumoto S, Atoini Y, Koide Y, Hayami S, Kim Y, Harrowfield J, Thuéry P. Ligand competition on uranyl ion: further examples of zwitterionic vs. anionic carboxylate coordination. CrystEngComm 2023; 25: 5748-5758.
| Crossref | Google Scholar |

15  Kusumoto S, Atoini Y, Masuda S, Koide Y, Chainok K, Kim Y, Harrowfield J, Thuéry P. Woven, polycatenated, or cage structures: effect of modulation of ligand curvature in heteroleptic uranyl ion complexes. Inorg Chem 2023; 62: 7803-7813.
| Crossref | Google Scholar | PubMed |

16  Kusumoto S, Atoini Y, Koide Y, Chainok K, Hayami S, Kim Y, Harrowfield J, Thuéry P. Nanotubule inclusion in the channels formed by a six-fold interpenetrated, triperiodic framework. Chem Commun 2023; 59: 10004-10007.
| Crossref | Google Scholar | PubMed |

17  Groom CR, Bruno IJ, Lightfoot MP, Ward SC. Expanding the usage of the Source Function to experimental electron densities. Acta Crystallogr – B 2016; 72: 171-179.
| Crossref | Google Scholar |

18  Nikkhah SJ, Vandichel M. Modeling polyzwitterion-based drug delivery platforms: a perspective of the current state-of-the-art and beyond. ACS Eng Au 2022; 2: 274-294.
| Crossref | Google Scholar |

19  Ji B, Wang W, Deng D, Zhang Y, Cao L, Zhou L, Ruan C, Li T. Structural competition between π⋯π interactions and halogen bonds: a crystallographic study. CrystEngComm 2013; 15: 769-774.
| Crossref | Google Scholar |

20  Krause L, Herbst-Irmer R, Sheldrick GM, Stalke D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J Appl Crystallogr 2015; 48: 3-10.
| Crossref | Google Scholar | PubMed |

21  Sheldrick GM. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr – A 2015; 71: 3-8.
| Crossref | Google Scholar | PubMed |

22  Hübschle CB, Sheldrick GM, Dittrich B. ShelXle: a Qt graphical user interface for SHELXL. J Appl Crystallogr 2011; 44: 1281-1284.
| Crossref | Google Scholar | PubMed |

23  Spek AL. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr – C 2015; 71: 9-18.
| Crossref | Google Scholar | PubMed |

24  MN Burnett, CK Johnson. ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for crystal structure illustrations. Report ORNL-6895. Oak Ridge, TN, USA: Oak Ridge National Laboratory; 1996. 10.2172/369685

25  Farrugia LJ. WinGX and ORTEP for Windows: an update. J Appl Crystallogr 2012; 45: 849-854.
| Crossref | Google Scholar |

26  Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 2011; 44: 1272-1276.
| Crossref | Google Scholar |

27  Blatov VA, Shevchenko AP, Proserpio DM. Applied topological analysis of crystal structures with the program package ToposPro. Cryst Growth Des 2014; 14: 3576-3586.
| Crossref | Google Scholar |

28  Thuéry P, Harrowfield J. 2,5-Thiophenedicarboxylate: an interpenetration-inducing ligand in uranyl chemistry. Inorg Chem 2021; 60: 9074-9083.
| Crossref | Google Scholar | PubMed |

29  Atoini Y, Harrowfield J, Thuéry P. 4-(Ammoniomethyl)benzoate, a protic zwitterionic bifunctional linker in uranyl ion carboxylate complexes. CrystEngComm 2024; 26: 3714-3725.
| Crossref | Google Scholar |

30  Spek AL. Structure validation in chemical crystallography. Acta Crystallogr, Sect D 2009; 65: 148-155.
| Crossref | Google Scholar | PubMed |

31  Bondi A. Van der Waals volumes and radii. J Phys Chem 1964; 68: 441-451.
| Crossref | Google Scholar |

32  Thorley KJ, McCulloch I. Why are S–F and S–O non-covalent interactions stabilising? J Mater Chem C 2018; 6: 12413-12421.
| Crossref | Google Scholar |

33  Spackman PR, Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D, Spackman MA. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and qu­antitative analysis of molecular crystals. J Appl Crystallogr 2021; 54: 1006-1011.
| Crossref | Google Scholar | PubMed |

34  Thuéry P, Harrowfield J. Structural consequences of 1,4-cyclohexanedicarboxylate cis/trans isomerism in uranyl ion complexes: from molecular species to 2D and 3D entangled nets. Inorg Chem 2017; 56: 13464-13481.
| Crossref | Google Scholar | PubMed |

35  Thuéry P, Atoini Y, Harrowfield J. Uranyl–organic coordination polymers with trans-1,2-, trans-1,4-, and cis-1,4-cyclohexanedicarboxylates: effects of bulky pph4+ and pph3Me+ counterions. Cryst Growth Des 2018; 18: 2609-2619.
| Crossref | Google Scholar |

36  Thuéry P, Harrowfield J. Uranyl ion-containing polymeric assemblies with cis/trans Isomers of 1,2-, 1,3-, and 1,4-cyclohexanedicarboxylates, Including a helical chain and a 6-fold-interpenetrated framework. Cryst Growth Des 2020; 20: 262-273.
| Crossref | Google Scholar |

37  Wei SY, Bai FY, Hou YN, Zhang XX, Xu XT, Wang JX, Zhang HZ, Xing YH. Design, synthesis and structure of uranyl coordination polymers from 2-D layer to 3-D network structure. J Coord Chem 2015; 68: 507-519.
| Crossref | Google Scholar |

38  Thuéry P, Atoini Y, Harrowfield J. Crown ethers and their alkali metal ion complexes as assembler groups in uranyl–organic coordination polymers with cis-1,3-, cis-1,2-, and trans-1,2-cyclohexanedicarboxylates. Cryst Growth Des 2018; 18: 3167-3177.
| Crossref | Google Scholar |

39  Thuéry P, Atoini Y, Harrowfield J. Chiral discrete and polymeric uranyl ion complexes with (1R,3S)-(+)-camphorate ligands: counterion-dependent formation of a hexanuclear cage. Inorg Chem 2019; 58: 870-880.
| Crossref | Google Scholar | PubMed |

40  Zheng Z, Qiu J, Lu H, Wang JQ, Lin J. Luminometric dosimetry of X-ray radiation by a zwitterionic uranium coordination polymer. RSC Adv 2022; 12: 12878-12881.
| Crossref | Google Scholar | PubMed |

41  Löffler ST, Hümmer J, Scheurer A, Heinemann FW, Meyer K. Unprecedented pairs of uranium (iv/v) hydroxido and (iv/v/vi) oxido complexes supported by a seven-coordinate cyclen-anchored tris-aryloxide ligand. Chem Sci 2022; 13: 11341-11351.
| Crossref | Google Scholar | PubMed |

42  Atoini Y, Kusumoto S, Koide Y, Hayami S, Kim Y, Harrowfield J, Thuéry P. 1,1ʹ-Dimethyl-4,4ʹ-bipyridinium as a multivalent structure-directing counterion to anionic uranyl ion polycarboxylate complexes. Polyhedron 2024; 250: 116848.
| Crossref | Google Scholar |

43  Thuéry P, Atoini Y, Harrowfield J. Functionalized aromatic dicarboxylate ligands in uranyl–organic assemblies: the cases of carboxycinnamate and 1,2-/1,3-phenylenedioxydiacetate. Inorg Chem 2020; 59: 2923-2936.
| Crossref | Google Scholar | PubMed |

44  Harrowfield J, Atoini Y, Thuéry P. Plumbing the uncertainties of solvothermal synthesis involving uranyl ion carboxylate complexes. CrystEngComm 2022; 24: 1475-1484.
| Crossref | Google Scholar |

45  Dunn GE, Lee GKJ, Thimm H. Kinetics and mechanism of decarboxylation of some pyridinecarboxylic acids in aqueous solution. Can J Chem 1972; 50: 3017-3027.
| Google Scholar |

46  Borkowski LA, Cahill CL. Crystal engineering with the uranyl cation II. Mixed aliphatic carboxylate/aromatic pyridyl coordination polymers:  synthesis, crystal structures, and sensitized luminescence. Cryst Growth Des 2006; 6: 2248-2259.
| Crossref | Google Scholar |

47  Thuéry P, Harrowfield J. A new form of triple-stranded helicate found in uranyl complexes of aliphatic α,ω-dicarboxylates. Inorg Chem 2015; 54: 10539-10541.
| Crossref | Google Scholar | PubMed |

48  Thuéry P, Harrowfield J. Counter-ion control of structure in uranyl ion complexes with 2,5-thiophenedicarboxylate. CrystEngComm 2016; 18: 1550-1562.
| Crossref | Google Scholar |

49  Thuéry P, Harrowfield J. Uranyl ion complexes with long-chain aliphatic α,ω-dicarboxylates and 3d-block metal counterions. Inorg Chem 2016; 55: 2133-2145.
| Crossref | Google Scholar | PubMed |

50  Charushnikova IA, Krot NN, Polyakova IN, Makarenkov VI. Synthesis of double uranyl phthalates of the M4[(UO2)43-O)2(C6H4C2O4)4]⋅nH2O type with M = NH4, K, and Cs. Crystal structure of K4[(UO2)4O2(C6H4C2O4)4]⋅3H2O. Radiochemistry 2005; 47: 241-246.
| Crossref | Google Scholar |

51  Mihalcea I, Henry N, Loiseau T. Revisiting the uranyl-phthalate system: isolation and crystal structures of two types of uranyl−organic frameworks (UOF). Cryst Growth Des 2011; 11: 1940-1947.
| Crossref | Google Scholar |

52  Mihalcea I, Volkringer C, Henry N, Loiseau T. Series of mixed uranyl–lanthanide (Ce, Nd) organic coordination polymers with aromatic polycarboxylates linkers. Inorg Chem 2012; 51: 9610-9618.
| Crossref | Google Scholar | PubMed |

53  Andreev G, Budantseva N, Levtsova A, Sokolova M, Fedoseev A. Formation of uranyl phthalate coordination polymers with unusual 2D net topologies in the presence of organic cations. CrystEngComm 2020; 22: 8394-8404.
| Crossref | Google Scholar |

54  Thuéry P, Harrowfield J. Chiral one- to three-dimensional uranyl–organic assemblies from (1R,3S)-(+)-camphoric acid. Cryst Growth Des 2021; 21: 3000-3013.
| Crossref | Google Scholar |