AuNPs synthesised in situ from self-assembled peptide hydrogels modulating peptide secondary structure
Bin Huang A B # , Lingyi Li B # , Fuzhen Yan C , Fangjie Liu A D * , Jin Zhang E * , Linlin Zhong B * and Wenlong Xu BA
B
C
D
E
# These authors contributed equally to this paper.
Handling Editor: Charlotte Williams
Abstract
The disease caused by amyloidosis is thought to be due to the toxicity of the hydrophobic groups exposed by the β-sheet structure among amyloid oligomers. The non-specific binding of nanomaterials to proteins and peptides may be able to modulate the β-sheet structure. In this work, we designed an amphipathic peptide Fmoc-FFCKK-OH based on the amyloid peptide FF sequence in order to evaluate nanomaterials as amyloid aggregation regulators. Au3+ was used to modulate peptide self-assembly to form hydrogels and to form gold nanoparticles (AuNPs) in situ under the reduction of –SH. We simplified the complex process of structural transformation of proteins and peptides by constructing a hydrogel model. The transformation and aggregation behaviour of the secondary structure of peptides on the surface of AuNPs over time was investigated. Circular dichroism (CD) and surface-enhanced Raman scattering (SERS) were used to observe the transition from random coil to β-sheet with some α-helix within Fmoc-FFCKK-OH. This work not only simplifies the complexity of the study but also contributes to the understanding of the role of AuNPs in the regulation of amyloid formation and provides a research basis for AuNPs as amyloid regulators.
Keywords: amyloid peptide, coordination chemistry, gold nanoparticles, growth kinetics, hydrogel, peptide materials, secondary structure, self assembly.
References
1 Araki K, Yagi N, Aoyama K, Choong C-J, Hayakawa H, Fujimura H, Nagai Y, Goto Y, Mochizuki H. Parkinson’s disease is a type of amyloidosis featuring accumulation of amyloid fibrils of α-synuclein. Proc Natl Acad Sci USA 2019; 116: 17963-17969.
| Crossref | Google Scholar | PubMed |
2 Purro SA, Nicoll AJ, Collinge J. Prion protein as a toxic acceptor of amyloid-β oligomers. Biol Psychiat 2018; 83: 358-368.
| Crossref | Google Scholar | PubMed |
3 Asthana S, Mallick B, Alexandrescu AT, Jha S. IAPP in type II diabetes: basic research on structure, molecular interactions, and disease mechanisms suggests potential intervention strategies. Biochim Biophys Acta Biomembr 2018; 1860: 1765-1782.
| Crossref | Google Scholar | PubMed |
4 Jokar S, Khazaei S, Behnammanesh H, Shamloo A, Erfani M, Beiki D, Bavi O. Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer’s disease therapy. Biophys Rev 2019; 11: 901-925.
| Crossref | Google Scholar |
5 Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid oligomers: a joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis. Chem Rev 2021; 121: 2545-2647.
| Crossref | Google Scholar | PubMed |
6 Lauwers E, Lalli G, Brandner S, Collinge J, Compernolle V, Duyckaerts C, Edgren G, Haïk S, Hardy J, Helmy A, Ivinson AJ, Jaunmuktane Z, Jucker M, Knight R, Lemmens R, Lin IC, Love S, Mead S, Perry VH, Pickett J, Poppy G, Radford SE, Rousseau F, Routledge C, Schiavo G, Schymkowitz J, Selkoe DJ, Smith C, Thal DR, Theys T, Tiberghien P, van den Burg P, Vandekerckhove P, Walton C, Zaaijer HL, Zetterberg H, De Strooper B. Potential human transmission of amyloid β pathology: surveillance and risks. Lancet Neurol 2020; 19: 872-878.
| Crossref | Google Scholar | PubMed |
7 Knowles TP, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 2014; 15: 384-396.
| Crossref | Google Scholar | PubMed |
8 Tolar M, Abushakra S, Sabbagh M. The path forward in Alzheimer’s disease therapeutics: reevaluating the amyloid cascade hypothesis. Alzheimers Dement 2020; 16: 1553-1560.
| Crossref | Google Scholar | PubMed |
9 Sengupta U, Nilson AN, Kayed R. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 2016; 6: 42-49.
| Crossref | Google Scholar | PubMed |
10 John T, Adler J, Elsner C, Petzold J, Krueger M, Martin LL, Huster D, Risselada HJ, Abel B. Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation. J Colloid Interf Sci 2022; 622: 804-818.
| Crossref | Google Scholar |
11 Fändrich M. Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity. J Mol Biol 2012; 421: 427-440.
| Crossref | Google Scholar | PubMed |
12 Simmons LK, May PC, Tomaselli KJ, Rydel RE, Fuson KS, Brigham EF, Wright S, Lieberburg I, Becker GW, Brems DN. Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro. Mol Pharmacol 1994; 45: 373-379.
| Google Scholar | PubMed |
13 Sayed RH, Hawkins PN, Lachmann HJ. Emerging treatments for amyloidosis. Kidney Int 2015; 87: 516-526.
| Crossref | Google Scholar | PubMed |
14 Pepys MB, Herbert J, Hutchinson WL, Tennent GA, Lachmann HJ, Gallimore JR, Lovat LB, Bartfai T, Alanine A, Hertel C, Hoffmann T, Jakob-Roetne R, Norcross RD, Kemp JA, Yamamura K, Suzuki M, Taylor GW, Murray S, Thompson D, Purvis A, Kolstoe S, Wood SP, Hawkins PN. Targeted pharmacological depletion ofserum amyloid P component fortreatment of human amyloidosis. Nature 2002; 417: 254-259.
| Crossref | Google Scholar | PubMed |
15 Loke SL, Stein CA, Zhang XH, Mori K, Nakanishi M, Subasinghe C, Cohen JS, Neckers LM. Characterization of oligonucleotide transport into living cells. Proc Natl Acad Sci USA 1989; 86: 3474-3478.
| Crossref | Google Scholar | PubMed |
16 Ma M, Gao N, Li X, Liu Z, Pi Z, Du X, Ren J, Qu X. A biocompatible second near-infrared nanozyme for spatiotemporal and non-invasive attenuation of amyloid deposition through scalp and skull. ACS Nano 2020; 14: 9894-9903.
| Crossref | Google Scholar | PubMed |
17 Fu D, Liu D, Zhang L, Sun L. Self-assembled fluorescent tripeptide nanoparticles for bioimaging and drug delivery applications. Chin Chem Lett 2020; 31: 3195-3199.
| Crossref | Google Scholar |
18 Zhang H, Xin X, Sun J, Zhao L, Shen J, Song Z, Yuan S. Self-assembled chiral helical nanofibers by amphiphilic dipeptide derived from D- or L-threonine and application as a template for the synthesis of Au and Ag nanoparticles. J Colloid Interf Sci 2016; 484: 97-106.
| Crossref | Google Scholar | PubMed |
19 Wang W, Wang Z, Sun D, Li S, Deng Q, Xin X. Supramolecular self-assembly of atomically precise silver nanoclusters with chiral peptide for temperature sensing and detection of arginine. Nanomaterials 2022; 12: 424.
| Crossref | Google Scholar | PubMed |
20 Hanada S, Fujioka K, Inoue Y, Kanaya F, Manome Y, Yamamoto K. Cell-based in vitro blood–brain barrier model can rapidly evaluate nanoparticles’ brain permeability in association with particle size and surface modification. Int J Mod Sci 2014; 15: 1812-1825.
| Crossref | Google Scholar | PubMed |
21 Giorgetti S, Greco C, Tortora P, Aprile FA. Targeting amyloid aggregation: an overview of strategies and mechanisms. Int J Mod Sci 2018; 19: 2677.
| Crossref | Google Scholar | PubMed |
22 Shannahan J. The biocorona: a challenge for the biomedical application of nanoparticles. Nanotechnol Rev 2017; 6: 345-353.
| Crossref | Google Scholar | PubMed |
23 Auer S, Trovato A, Vendruscolo M. A condensation-ordering mechanism in nanoparticle-catalyzed peptide aggregation. PLoS Comput Biol 2009; 5: 1000458.
| Crossref | Google Scholar |
24 Morriss-Andrews A, Bellesia G, Shea JE. Effects of surface interactions on peptide aggregate morphology. J Chem Inf Model 2011; 135: 085102.
| Crossref | Google Scholar |
25 Zhao Y, Wang J, Deng L, Zhou P, Wang S, Wang Y, Xu H, Lu JR. Tuning the self-assembly of short peptides via sequence variations. Langmuir 2013; 29: 13457-13464.
| Crossref | Google Scholar | PubMed |
26 Wang W, Xu Y, Tang Y, Li Q. Self-assembled metal complexes in biomedical research. Adv Mater 2024; 2416122.
| Crossref | Google Scholar | PubMed |
27 Hao S, Li X, Han A, Yang Y, Fang G, Liu J, Wang S. CLVFFA-Functionalized gold nanoclusters inhibit Aβ40 fibrillation, fibrils’ prolongation, and mature fibrils’ disaggregation. ACS Chem Neurosci 2019; 10: 4633-4642.
| Crossref | Google Scholar | PubMed |
28 John T, Gladytz A, Kubeil C, Martin LL, Risselada HJ, Abel B. Impact of nanoparticles on amyloid peptide and protein aggregation: a review with a focus on gold nanoparticles. Nanoscale 2018; 10: 20894-20913.
| Crossref | Google Scholar | PubMed |
29 Liu H, Xie B, Dong X, Zhang L, Wang Y, Liu F, Sun Y. Negatively charged hydrophobic nanoparticles inhibit amyloid β-protein fibrillation: the presence of an optimal charge density. React Funct Polym 2016; 103: 108-116.
| Crossref | Google Scholar |
30 Li L, Liu J, Li X, Tang Y, Shi C, Zhang X, Cui Y, Wang L, Xu W. Influencing factors and characterization methods of nanoparticles regulating amyloid aggregation. Soft Matter 2022; 18: 3278-3290.
| Crossref | Google Scholar | PubMed |
31 Ma Y, Huang R, Qi W, Su R, He Z. Fluorescent silicon nanoparticles inhibit the amyloid fibrillation of insulin. J Mater Chem B 2019; 7: 1397-1403.
| Crossref | Google Scholar | PubMed |
32 Mavlankar NA, K. Awasthi A, Ralhan J, Pal A. Amyloid-inspired peptide self-assembly/disassembly as intervened by gold nanoparticles and polydopamine coating to dictate spatiotemporal organization. ChemNanoMat 2022; 8: e20220036.
| Crossref | Google Scholar |
33 Streich C, Akkari L, Decker C, Bormann J, Rehbock C, Müller-Schiffmann A, Niemeyer FC, Nagel-Steger L, Willbold D, Sacca B, Korth C, Schrader T, Barcikowski S. Characterizing the effect of multivalent conjugates composed of Aβ-specific ligands and metal nanoparticles on neurotoxic fibrillar aggregation. ACS Nano 2016; 10: 7582-7597.
| Crossref | Google Scholar | PubMed |
34 Kong L, Yuan Z, Sun N, Ding J, Liu S, Zhang S, Lv Z, Xu W, Liu G, Liu X. Advances in flexible hydrogels for light–thermal–electricity energy conversion and storage. J Energy Storage 2023; 60: 106618.
| Crossref | Google Scholar |
35 Zhou X, Zhao X, Wang Y, Wang P, Jiang X, Song Z, Ding J, Liu G, Li X, Sun W, Xu W. Gel-based strain/pressure sensors for underwater sensing: sensing mechanisms, design strategies and applications. Compos – B. Eng 2023; 255: 110631.
| Crossref | Google Scholar |
36 Ma X, Zhou X, Ding J, Huang B, Wang P, Zhao Y, Mu Q, Zhang S, Ren C, Xu W. Hydrogels for underwater adhesion: adhesion mechanism, design strategies and applications. J Mater Chem A 2022; 10: 11823-11853.
| Crossref | Google Scholar |
37 Riaz Z, Baddi S, Feng C-L. Supramolecular co-assembled hybrid hydrogels for antibacterial therapy. Supramol Mater 2024; 3: 100064.
| Crossref | Google Scholar |
38 Kralj S, Bellotto O, Parisi E, Garcia AM, Iglesias D, Semeraro S, Deganutti C, D’Andrea P, Vargiu AV, Geremia S, De Zorzi R, Marchesan S. Heterochirality and halogenation control Phe-Phe hierarchical assembly. ACS Nano 2020; 14: 16951-16961.
| Crossref | Google Scholar | PubMed |
39 Bianco S, Wimberger L, Ben‐Tal Y, Williams GT, Smith AJ, Beves JE, Adams DJ. Reversibly tuning the viscosity of peptide-based solutions using visible light. Chem Eur J 2024; 30: e202400544.
| Crossref | Google Scholar |
40 Balasco N, Altamura D, Scognamiglio PL, Sibillano T, Giannini C, Morelli G, Vitagliano L, Accardo A, Diaferia C. Self-assembled materials based on fully aromatic peptides: the impact of tryptophan, tyrosine, and dopa residues. Langmuir 2024; 40: 1470-1486.
| Crossref | Google Scholar | PubMed |
41 Ji W, Yuan C, Zilberzwige-Tal S, Xing R, Chakraborty P, Tao K, Gilead S, Yan X, Gazit E. Metal-ion modulated structural transformation of amyloid-like dipeptide supramolecular self-assembly. ACS Nano 2019; 13: 7300-7309.
| Crossref | Google Scholar | PubMed |
42 Xiong Y, Hu X, Ding J, Wang X, Xue Z, Niu Y, Zhang S, Sun C, Xu W. Mechanical properties of low-molecular-weight peptide hydrogels improved by thiol-ene click chemistry. Langmuir 2023; 39: 16750-16759.
| Crossref | Google Scholar | PubMed |
43 Li M, Zhu H, Adorinni S, Xue W, Heard A, Garcia AM, Kralj S, Nitschke JR, Marchesan S. Metal ions trigger the gelation of cysteine-containing peptide-appended coordination cages. Angew Chem Int Ed 2024; 63: e202406909.
| Crossref | Google Scholar |
44 Pham T, Jackson JB, Halas NJ, Lee TR. Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir 2002; 18: 4915-4920.
| Crossref | Google Scholar |
45 Cioran AM, Teixidor F, Krpetić Ž, Brust M, Viñas C. Preparation and characterization of Au nanoparticles capped with mercaptocarboranyl clusters. Dalton Trans 2014; 43: 5054-5061.
| Crossref | Google Scholar | PubMed |
46 Arakawa H, Takeda K, Higashi SL, Shibata A, Kitamura Y, Ikeda M. Self-assembly and hydrogel formation ability of Fmoc-dipeptides comprising α-methyl-L-phenylalanine. Polym J 2020; 52: 923-930.
| Crossref | Google Scholar |
47 Sun Z, Xie X, Xu W, Chen K, Liu Y, Chu X, Niu Y, Zhang S, Ren C. Chameleon-inspired energy-saving smart window responding to natural weather. ACS Sustain Chem Eng 2021; 9: 12949-12959.
| Crossref | Google Scholar |
48 Li Z, Xu W, Wang X, Jiang W, Ma X, Wang F, Zhang C, Ren C. Fabrication of PVA/PAAm IPN hydrogel with high adhesion and enhanced mechanical properties for body sensors and antibacterial activity. Eur Polym J 2021; 146: 110253.
| Crossref | Google Scholar |
49 Bej R, Stevens CA, Nie C, Ludwig K, Degen GD, Kerkhoff Y, Pigaleva M, Adler JM, Bustos NA, Page TM, Trimpert J, Block S, Kaufer BB, Ribbeck K, Haag R. Mucus-Inspired Self-Healing Hydrogels: A Protective Barrier for Cells against Viral Infection. Adv Mater 2024; 36: 2401745.
| Crossref | Google Scholar | PubMed |
50 Xu W, Hong Y, Hu Y, Hao J, Song A. Ultrafine Au and Ag nanoparticles synthesized from self-assembled peptide fibers and their excellent catalytic activity. ChemPhysChem 2016; 17: 2157-2163.
| Crossref | Google Scholar | PubMed |
51 Sharma K, Joseph JP, Sahu A, Yadav N, Tyagi M, Singh A, Pal A, Kartha KPR. Supramolecular gels from sugar-linked triazole amphiphiles for drug entrapment and release for topical application. RSC Adv 2019; 9: 19819-19827.
| Crossref | Google Scholar | PubMed |
52 Marin D, Kralj S, Stehlik S, Marchesan S. Nanocomposite hydrogels from nanodiamonds and a self-assembling tripeptide. Chem Eur J 2024; 30: e202402961.
| Crossref | Google Scholar | PubMed |
53 Garcia-Leis A, Sanchez-Cortes S. Label-free detection and self-aggregation of amyloid β-peptides based on plasmonic effects induced by Ag nanoparticles: implications in Alzheimer’s disease diagnosis. ACS Appl Nano Mater 2021; 4: 3565-3575.
| Crossref | Google Scholar |
54 Chen Y, Xianyu Y, Jiang X. Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc Chem Res 2017; 50: 310-319.
| Crossref | Google Scholar | PubMed |
55 Sivakumar R, Dinh VP, Lee NY. Ultraviolet-induced in situ gold nanoparticles for point-of-care testing of infectious diseases in loop-mediated isothermal amplification. Lab Chip 2021; 21: 700-709.
| Crossref | Google Scholar | PubMed |
56 Lee H-E, Lee J, Ju M, Ahn H-Y, Lee YY, Jang H-S, Nam KT. Identifying peptide sequences that can control the assembly of gold nanostructures. Mol Syst Des Eng 2018; 3: 581-590.
| Crossref | Google Scholar |
57 Yang H, Yang S, Kong J, Dong A, Yu S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat Protoc 2015; 10: 382-396.
| Crossref | Google Scholar | PubMed |
58 Tang JD, Mura C, Lampe KJ. Stimuli-responsive, pentapeptide, nanofiber hydrogel for tissue engineering. J Am Chem Soc 2019; 141: 4886-4899.
| Crossref | Google Scholar | PubMed |
59 Lu R, Li W-W, Katzir A, Raichlin Y, Yu H-Q, Mizaikoff B. Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. Analyst 2015; 140: 765-770.
| Crossref | Google Scholar | PubMed |
60 Maiti NC, Apetri MM, Zagorski MG, Carey PR, Anderson VE. Raman spectroscopic characterization of secondary structure in natively unfolded proteins: α-synuclein. J Am Chem Soc 2004; 126: 2399-2408.
| Crossref | Google Scholar | PubMed |
61 Bao Y, Li Y, Ling L, Xiang X, Han X, Zhao B, Guo X. Label-free and highly sensitive detection of native proteins by Ag IANPs via surface-enhanced Raman spectroscopy. Anal Chem 2020; 92: 14325-14329.
| Crossref | Google Scholar | PubMed |
62 Zhang P, Moretti M, Allione M, Tian Y, Ordonez-Loza J, Altamura D, Giannini C, Torre B, Das G, Li E, Thoroddsen ST, Sarathy SM, Autiero I, Giugni A, Gentile F, Malara N, Marini M, Di Fabrizio E. A droplet reactor on a super-hydrophobic surface allows control and characterization of amyloid fibril growth. Commun Biol 2020; 3: 457.
| Crossref | Google Scholar | PubMed |