Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Application of diglycolamide extractant in rare-earth extraction

Yiwen Wang A B , Aijun Gong https://orcid.org/0000-0002-6261-1013 A B * , Lina Qiu A B , Yuzhen Bai A B , Yang Liu A B , Ge Gao A B and Weiyu Zhao A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.

B Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing, 100083, PR China.

* Correspondence to: gongaijun5661@ustb.edu.cn

Handling Editor: Martyn Coles

Australian Journal of Chemistry 77, CH23188 https://doi.org/10.1071/CH23188
Submitted: 16 October 2023  Accepted: 8 February 2024  Published online: 4 March 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

Diglycolamide (DGA) extractant is a kind of rare-earth extractant with promising applications that has the advantages of high extraction capacity, ease of synthesis, good thermal stability and good radiation stability. It is a green extractant that contains only four elements, C, H, O and N, and produces no residue after incineration. The properties of DGAs containing branched N,N′-alkyl substituents have been much studied in recent years, and it has been shown that branched side chains lead to better separation. The introduction of structurally rigid elements in DGA provides new possibilities for separation of rare earth elements (REEs). Owing to the tiny differences in the chemical properties of adjacent REES, the simple use of DGA extractant cannot meet all separation requirements, and a masking agent is added to the aqueous phase to improve the separation by coextraction to meet the requirements of different processes. This review presents the structural analysis of the complexes and crystals of diglycolamide extractants with rare-earth ions through different characterization means, and the effects of different structural extractants, solvents, nitric acid and phase modifiers on extraction behavior are reviewed. This review pays special attention to the effect of the side chain structure of diglycolamide on extraction behavior, which provides a theoretical basis and guiding direction for the field of separation of the REEs by diglycolamide extractants.

Keywords: aggregate, complex, diglycolamide, diluent, distribution ratio, liquid–liquid extraction, rare earths, rare earth elements, REEs, substituents, the third phase.

References

Xie F, Zhang TA, Dreisinger D, Doyle F. A critical review on solvent extraction of rare earths from aqueous solutions. Miner Eng 2014; 56: 10-28.
| Crossref | Google Scholar |

Fernandez V. Rare-earth elements market: a historical and financial perspective. Resour Policy 2017; 53: 26-45.
| Crossref | Google Scholar |

Liu T, Chen J. Extraction and separation of heavy rare earth elements: a review. Sep Purif Technol 2021; 276: 119263.
| Crossref | Google Scholar |

Billard I, Ouadi A, Gaillard C. Liquid–liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding. Anal Bioanal Chem 2011; 400(6): 1555-1566.
| Crossref | Google Scholar | PubMed |

Tavakkoli H, Aboutalebi MR, Seyedein SH, Ashrafizadeh SN. The impact of acidic media on the synergistic solvent extraction of Sm and Lu by mixture of organophosphorus extractants. J Solution Chem 2022; 51(12): 1571-1588.
| Crossref | Google Scholar |

Sui N, Huang K. A new strategy of three-liquid-phase partitioning for stripping of heavy rare earths from the loaded organic phase. Sep Purif Technol 2020; 251: 117386.
| Crossref | Google Scholar |

Dewulf B, Riaño S, Binnemans K. Separation of heavy rare-earth elements by non-aqueous solvent extraction: flowsheet development and mixer-settler tests. Sep Purif Technol 2022; 290: 120882.
| Crossref | Google Scholar |

Lam KL, Solon K, Jia M, Volcke EIP, van der Hoek JP. Life cycle environmental impacts of wastewater-derived phosphorus products: an agricultural end-user perspective. Environ Sci Technol 2022; 56: 10289-10298.
| Crossref | Google Scholar | PubMed |

Stephan H, Gloe K, Beger J, Mühl P. Liquid–liquid extraction of metal ions with amido podands. Solvent Extr Ion Exch 1991; 9: 459-469.
| Crossref | Google Scholar |

10  Ansari SA, Pathak P, Mohapatra PK, Manchanda VK. Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem Rev 2012; 112(3): 1751-1772.
| Crossref | Google Scholar | PubMed |

11  Leoncini A, Huskens J, Verboom W. Ligands for f-element extraction used in the nuclear fuel cycle. Chem Soc Rev 2017; 46(23): 7229-7273.
| Crossref | Google Scholar | PubMed |

12  Sasaki Y, Sugo Y, Suzuki S, Tachimori S. The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3n-dodecane system. Solvent Extr Ion Exch 2001; 19(1): 91-103.
| Crossref | Google Scholar |

13  Narita H, Tanaka M. Separation of rare earth elements from base metals in concentrated HNO3, H2SO4 and HCl solutions with diglycolamide. Solvent Extr Res Dev, Jpn 2013; 20: 115-121.
| Crossref | Google Scholar |

14  Mowafy EA, Mohamed D. Extraction and separation of Nd(III), Sm(III), Dy(III), Fe(III), Ni(II), and Cs(I) from concentrated chloride solutions with N,N,N′,N′-tetra(2-ethylhexyl) diglycolamide as new extractant. J Rare Earths 2015; 33: 432-438.
| Crossref | Google Scholar |

15  Peng X, Han J, Yuan G, Zhao J, Cui Y, Sun G. Separation of Pr(III) and Fe(III) by unsymmetrical diglycolamides from nitric acid media. Sep Purif Technol 2019; 217: 294-298.
| Crossref | Google Scholar |

16  Sasaki Y, Morita K, Matsumiya M, Ono R, Shiroishi H. Fundamental study on multistage extraction using TDdDGA for separation of lanthanides present in Nd magnets. JOM 2021; 73(4): 1037-1043.
| Crossref | Google Scholar |

17  Sasaki Y, Sugo Y, Tachimori S. Actinide separation with a novel tridentate ligand, di-glycolic amide for application to partitioning process. In: Proceedings of International Conference on Scientific Research on the Back-end of the Fuel Cycle for the 21st Century (ATALANTE 2000); 24–26 October 2000, Avignon, France. 2000; US Department of Energy, Office of Scientific and Technical Information. p. 6. Available at https://www.osti.gov/etdeweb/servlets/purl/20176337

18  Sasaki Y, Sugo Y, Morita K, Nash KL. The effect of alkyl substituents on actinide and lanthanide extraction by diglycolamide compounds. Solvent Extr Ion Exch 2015; 33: 625-641.
| Crossref | Google Scholar |

19  Galán H, Zarzana CA, Wilden A, Núñez A, Schmidt H, Egberink RJM, et al. Gamma-radiolytic stability of new methylated TODGA derivatives for minor actinide recycling. Dalton Trans 2015; 44(41): 18049-18056.
| Crossref | Google Scholar | PubMed |

20  Sasaki Y, Rapold P, Arisaka M, Hirata M, Kimura T, Hill C, et al. An additional insight into the correlation between the distribution ratios and the aqueous acidity of the TODGA system. Solvent Extr Ion Exch 2007; 25(2): 187-204.
| Crossref | Google Scholar |

21  Hu P, Qian L, Zhou X, Pan D, Wu W. Solvent extraction of uranyl by N,N,N′,N′-tetraoctylsuccinylamide from nitric acid solution. J Radioanal Nucl Chem 2013; 295(2): 1209-1213.
| Crossref | Google Scholar |

22  Tachimori S, Sasaki Y, Suzuki S. Modification of TODGA–n-dodecane solvent with a monoamide for high loading of lanthanides(III) and actinides(III). Solvent Extr Ion Exch 2002; 20: 687-699.
| Crossref | Google Scholar |

23  Sasaki Y, Choppin GR. Solvent extraction of Eu, Th, U, Np and Am with N,N’-dimethyl-N,N’-dihexyl-3-oxapentanediamide and its analogous compounds. Anal Sci 1996; 12(2): 225-230.
| Crossref | Google Scholar |

24  Sasaki Y, Adachi T, Choppin GR. Solvent extraction study of actinide elements by N,N′-dimethyl-N,N′-dihexyl-3-oxapentanediamide and thenoyltrifluoroacetone. J Alloys Compd 1998; 271–273: 799-802.
| Crossref | Google Scholar |

25  Liu Y, Liu Z, Zhao G, Zhou Y, Gao Y, He H. Separation of actinides: extraction chemistry and application of unsymmetric diglycolamides. Prog Chem 2020; 32(Z1): 219-229.
| Crossref | Google Scholar |

26  Peroutka AA, Galley SS, Shafer JC. Elucidating the speciation of extracted lanthanides by diglycolamides. Coord Chem Rev 2023; 482: 215071.
| Crossref | Google Scholar |

27  Chen Z, Yang X, Song L, Wang X, Xiao Q, Xu H-R, et al. Extraction and complexation of trivalent rare earth elements with tetraalkyl diglycolamides. Inorganica Chim Acta 2020; 513: 119928.
| Crossref | Google Scholar |

28  Sun G-J, Yang JH, Yang HX, Sun GX, Cui Y. Extraction study of rare earth elements with N,N′-dibutyl-N,N′-di(1-methylheptyl)diglycolamide from hydrochloric acid. Nucl Sci Tech 2016; 27: 75.
| Crossref | Google Scholar |

29  Liu Y, Zhao C, Liu Z, Zhou Y, Jiao C, Zhang M, et al. Extraction and stripping behaviors of 14 lanthanides from nitric acid medium by N,N’-dimethyl-N,N’-dioctyl diglycolamide. J Radioanal Nucl Chem 2020; 325: 409-416.
| Crossref | Google Scholar |

30  Mowafy EA, Mohamed D. Extraction behavior of trivalent lanthanides from nitric acid medium by selected structurally related diglycolamides as novel extractants. Sep Purif Technol 2014; 128: 18-24.
| Crossref | Google Scholar |

31  Anitha M, Kotekar MK, Singh DK, Sharma JN, Singh H. Solvent extraction studies of rare earths from thiocyanate medium with N,N,N',N'-tetra(2-ethylhexyl) diglycolamide. Sep Sci Technol 2015; 50: 430-436.
| Crossref | Google Scholar |

32  Mowafy EA, Mohamed D. Extraction of rare earth elements from nitrate solution using novel unsymmetrical diglycolamide. Sep Sci Technol 2017; 52: 1006-1014.
| Crossref | Google Scholar |

33  Baldwin AG, Ivanov AS, Williams NJ, Ellis RJ, Moyer BA, Bryantsev VS, et al. Outer-sphere water clusters tune the lanthanide selectivity of diglycolamides. ACS Cent Sci 2018; 4(6): 739-747.
| Crossref | Google Scholar | PubMed |

34  Bhattacharyya A, Kanekar AS, Egberink RJM, Verboom W, Huskens J, Mohapatra PK. Unique selectivity reversal between Am3+ and Eu3+ ions by incorporation of alkyl branching in diglycolamide derivatives: DFT validation of experimental results. New J Chem 2022; 46(38): 18543-18550.
| Crossref | Google Scholar |

35  Birkholz MN, Freixa Z, van Leeuwen PW. Bite angle effects of diphosphines in C–C and C–X bond forming cross coupling reactions. Chem Soc Rev 2009; 38(4): 1099-1118.
| Crossref | Google Scholar | PubMed |

36  Florek J, Mushtaq A, Larivière D, Cantin G, Fontaine FG, Kleitz F. Selective recovery of rare earth elements using chelating ligands grafted on mesoporous surfaces. RSC Advances 2015; 5: 103782-103789.
| Crossref | Google Scholar |

37  Ansari SA, Mohapatra PK, Leoncini A, Ali SM, Huskens J, Verboom W. Highly efficient N-pivot tripodal diglycolamide ligands for trivalent f-cations: synthesis, extraction, spectroscopy, and density functional theory studies. Inorg Chem 2019; 58(13): 8633-8644.
| Crossref | Google Scholar | PubMed |

38  Nash KL, Jensen MP. Analytical separations of the lanthanides: basic chemistry and methods. Handb Phys Chem Rare Earths 2000; 28: 311-371.
| Crossref | Google Scholar |

39  Mowafy EA, Alshammari A, Mohamed D. Extraction behaviors of critical rare earth elements with novel structurally tailored unsymmetrical diglycolamides from acidic media. Solvent Extr Ion Exch 2021; 40: 387-411.
| Crossref | Google Scholar |

40  Cui Y, Yang J, Yang G, Xia G, Nie Y, Sun G. Effect of diluents on extraction behavior of rare earth elements with N,N,N′,N′-tetrabutyl-3-oxy-glutaramide from hydrochloric acid. Hydrometallurgy 2012; 121–124: 16-21.
| Crossref | Google Scholar |

41  Zhang M, Peng X, Su J, Yang Z, Zeb S, Li L, et al. Highly efficient extraction separation of La3+ and Ce3+ with N,N,N′,N′-tetraisobutyl-3-oxadiglycolamide from mixed REEs. Sep Purif Technol 2021; 258: 118012.
| Crossref | Google Scholar |

42  Case ME, Fox RV, Baek DL, Mincher BJ, Wai CM. Extraction behavior of selected rare earth metals from acidic chloride media using tetrabutyl diglycolamide. Solvent Extr Ion Exch 2017; 35: 496-506.
| Crossref | Google Scholar |

43  Campbell E, Holfeltz VE, Hall GB, Nash KL, Lumetta GJ, Levitskaia TG. Extraction behavior of Ln(III) ions by T2EHDGA/n-dodecane from nitric acid and sodium nitrate solutions. Solvent Extr Ion Exch 2018; 36(4): 331-346.
| Crossref | Google Scholar |

44  Bell K, Geist A, McLachlan F, Modolo G, Taylor R, Wilden A. Nitric acid extraction into TODGA. Procedia Chem 2012; 7: 152-159.
| Crossref | Google Scholar |

45  Yaita T, Herlinger AW, Thiyagarajan P, Jensen MP. Influence of extractant aggregation on the extraction of trivalent f‐element cations by a tetraalkyldiglycolamide. Solvent Extr Ion Exch 2004; 22(4): 553-571.
| Crossref | Google Scholar |

46  Nave S, Modolo G, Madic C, Testard F. Aggregation properties of N,N,N′,N′‐tetraoctyl‐3‐oxapentanediamide (TODGA) in n‐dodecane. Solvent Extr Ion Exch 2004; 22: 527-551.
| Crossref | Google Scholar |

47  Mowafy EA, Aly HF. Synthesis of some N,N,N′,N′‐tetraalkyl‐3‐oxa‐pentane‐1,5‐diamide and their applications in solvent extraction. Solvent Extr Ion Exch 2007; 25: 205-224.
| Crossref | Google Scholar |

48  Pathak PN, Ansari SA, Mohapatra PK, Manchanda VK, Patra AK, Aswal VK. Role of alkyl chain branching on aggregation behavior of two symmetrical diglycolamides: small angle neutron scattering studies. J Colloid Interface Sci 2013; 393: 347-351.
| Crossref | Google Scholar | PubMed |

49  Campbell EL, Holfeltz VE, Hall GB, Nash KL, Lumetta GJ, Levitskaia TG. Nitric acid and water extraction by T2EHDGA in n-dodecane. Solvent Extr Ion Exch 2017; 35(7): 586-603.
| Crossref | Google Scholar |

50  Chavan V, Patra S, Pandey AK, Thekkethil V, Iqbal M, Huskens J, et al. Understanding nitric acid-induced changes in the arrangement of monomeric and polymeric methacryloyl diglycolamides on their affinity toward f-element ions. J Phys Chem B 2015; 119(1): 212-218.
| Crossref | Google Scholar | PubMed |

51  Sadhu B, Clark AE. Molecular dynamics and network analysis reveal the contrasting roles of polar solutes within organic phase amphiphile aggregation. J Mol Liq 2022; 359: 119226.
| Crossref | Google Scholar |

52  Narayanan P, Swami KR, Prathibha T, Venkatesan KA. FTIR spectroscopic investigations on the aggregation behaviour of N,N,N′,N′-tetraoctyldiglycolamide and N,N-dioctylhydroxyacetamide in n-dodecane during the extraction of Nd(III) from nitric acid medium. J Mol Liq 2020; 314(15): 113685.
| Crossref | Google Scholar |

53  Špadina M, Bohinc K, Zemb T, Dufrêche JF. Multicomponent model for the prediction of nuclear waste/rare-earth extraction processes. Langmuir 2018; 34(35): 10434-10447.
| Crossref | Google Scholar | PubMed |

54  Brigham DM, Ivanov AS, Moyer BA, Delmau LH, Bryantsev VS, Ellis RJ. Trefoil-shaped outer-sphere ion clusters mediate lanthanide(III) ion transport with diglycolamide ligands. J Am Chem Soc 2017; 139(48): 17350-17358.
| Crossref | Google Scholar | PubMed |

55  Ansari SA, Mohapatra PK, Musharaf Ali S, Rawat N, Tomar BS, Leoncini A, et al. Complexation thermodynamics of tetraalkyl diglycolamides with trivalent f-elements in ionic liquids: spectroscopic, microcalorimetric and computational studies. New J Chem 2018; 42: 708-716.
| Crossref | Google Scholar |

56  Sengupta A, Bhattacharyya A, Verboom W, Ali SM, Mohapatra PK. Insight into the complexation of actinides and lanthanides with diglycolamide derivatives: experimental and density functional theoretical studies. J Phys Chem B 2017; 121(12): 2640-2649.
| Crossref | Google Scholar | PubMed |

57  Kajan I, Florianová M, Ekberg C, Matyskin AV. Effect of diluent on the extraction of europium(III) and americium(III) with N,N,N′,N′-tetraoctyl diglycolamide (TODGA). RSC Adv 2021; 11(58): 36707-36718.
| Crossref | Google Scholar | PubMed |

58  Alyapyshev M, Babain V, Eliseev I, Kenf E, Tkachenko L. New polar fluorinated diluents for diamide extractants. J Radioanal Nucl Chem 2016; 310(2): 785-792.
| Crossref | Google Scholar |

59  Ansari SA, Pathak PN, Manchanda VK, Husain M, Prasad AK, Parmar VS. N,N,N′,N′‐tetraoctyl diglycolamide (TODGA): a promising extractant for actinide‐partitioning from high‐level waste (HLW). Solvent Extr Ion Exch 2005; 23(4): 463-479.
| Crossref | Google Scholar |

60  Ying Z, Liu S, Li G, Wei Q, Ren X. The effect of diluent on the extraction: amide extracting chromium(VI) as an example. J Mol Liq 2023; 384: 122205.
| Crossref | Google Scholar |

61  Swami KR, Suneesh AS, Kumaresan R, Venkatesan KA, Antony MP. Dynamic light scattering and FTIR spectroscopic investigations on the reverse micelles produced during the extraction of Nd(III) and nitric acid in tetra ethylhexyl diglycolamide. ChemistrySelect 2017; 2(34): 11177-11186.
| Crossref | Google Scholar |

62  Rama Swami K, Venkatesan KA, Antony MP. Aggregation behavior of alkyldiglycolamides in n-dodecane medium during the extraction of Nd(III) and nitric acid. Ind Eng Chem Res 2018; 57(40): 13490-13497.
| Crossref | Google Scholar |

63  Massey D, Masters A, Macdonald-Taylor J, Woodhead D, Taylor R. Molecular dynamics study of the aggregation behavior of N,N,N′,N′-tetraoctyl diglycolamide. J Phys Chem B 2022; 126(33): 6290-6300.
| Crossref | Google Scholar | PubMed |

64  Parvathy N, Swami KR, Prathibha T, Venkatesan KA. Antagonism in the aggregation behaviour of N,N,N′,N′-tetraoctyldiglycolamide in n-dodecane upon adding N,N-dioctylhydroxyacetamide during trivalent metal extraction. J Mol Liq 2020; 317: 113940.
| Crossref | Google Scholar |

65  Gasparini GM, Grossi G. Review article long chain disubstituted aliphatic amides as extracting agents in industrial applications of solvent extraction. Solvent Extr Ion Exch 1986; 4: 1233-1271.
| Crossref | Google Scholar |

66  Pathak PN, Ansari SA, Kumar S, Tomar BS, Manchanda VK. Dynamic light scattering study on the aggregation behaviour of N,N,N’,N’-tetraoctyl diglycolamide (TODGA) and its correlation with the extraction behaviour of metal ions. J Colloid Interface Sci 2010; 342(1): 114-118.
| Crossref | Google Scholar | PubMed |

67  Narayanan P, Swami KR, Prathibha T, Venkatesan KA. Insights into the third phase formation behaviour of N,N‐didodecyl‐N’,N’‐dioctyl diglycolamide in n‐dodecane investigated by dynamic light scattering and FTIR spectroscopy. ChemistrySelect 2022; 7(37): e202202610.
| Crossref | Google Scholar |

68  Sasaki Y, Sugo Y, Suzuki S, Kimura T. A method for the determination of extraction capacity and its application to N,N,N′,N′-tetraalkylderivatives of diglycolamide-monoamide/n-dodecane media. Anal Chim Acta 2005; 543: 31-37.
| Crossref | Google Scholar |

69  Swami KR, Venkatesan KA. Unraveling the role of phase modifiers in the extraction of Nd(III) from nitric acid medium in tetra-bis(2-ethylhexyl)diglycolamide in n-dodecane containing long-chain aliphatic alcohols. J Mol Liq 2019; 296: 111741.
| Crossref | Google Scholar |

70  Peroutka AA, Galley SS, Shafer JC. A multi-faceted approach to probe organic phase composition in TODGA systems with 1-alcohol phase modifiers. RSC Adv 2023; 13: 6017-6026.
| Crossref | Google Scholar | PubMed |

71  Rout A, Kumar S, Ramanathan N. Effect of TBP on the coordination process of Eu(III) with T2EHDGA: a luminescence spectroscopy investigation. ChemistrySelect 2022; 7(40): e202202799.
| Crossref | Google Scholar |

72  Dhawa A, Rout A, Jawahar NR, Venkatesan KA. A systematic approach for achieving the maximum loading of Eu(III) in TODGA/n-dodecane phase with the aid of TBP phase modifier. J Mol Liq 2021; 341: 117397.
| Crossref | Google Scholar |

73  Swami KR, Kumaresan R, Venkatesan KA, Antony MP. Minimizing the aggregation of diglycolamide reverse micelles in the n-dodecane phase with bis-(2-ethylhexyl)phosphoric acid ‘reactive’ phase modifier. New J Chem 2018; 42: 8891-8899.
| Crossref | Google Scholar |

74  Swami KR, Prathibha T, Venkatesan KA. Aggregation and organic phase splitting behavior of a synergic extractant system probed by dynamic light scattering spectroscopy. J Mol Liq 2019; 291(1): 111320.
| Crossref | Google Scholar |

75  Prathibha T, Kumaresan R, Selvan BR, Venkatesan KA, Antony MP, Vasudeva Rao PR. N,N-Dialkyl-2-hydroxyacetamides for modifier-free separation of trivalent actinides from nitric acid medium. Radiochim Acta 2016; 104(3): 173-181.
| Crossref | Google Scholar |

76  Nomizu D, Sasaki Y, Kaneko M, Matsumiya M, Katsuta S. Complex formation of light and heavy lanthanides with DGA and DOODA, and its application to mutual separation in DGA–DOODA extraction system. J Radioanal Nucl Chem 2022; 331: 1483-1493.
| Crossref | Google Scholar |

77  Liu Y, Zhao C, Liu Z, Liu S, Zhou Y, Jiao C, et al. Study on the extraction of lanthanides by isomeric diglycolamide extractants: an experimental and theoretical study. RSC Adv 2022; 12(2): 790-797.
| Crossref | Google Scholar |

78  Whittaker D, Geist A, Modolo G, Taylor R, Sarsfield M, Wilden A. Applications of diglycolamide based solvent extraction processes in spent nuclear fuel reprocessing, part 1: TODGA. Solvent Extr Ion Exch 2018; 36: 223-256.
| Crossref | Google Scholar |

79  Kou F, Yang S, Qian H, Zhang L, Beavers CM, Teat SJ, et al. A fluorescence study on the complexation of Sm(III), Eu(III) and Tb(III) with tetraalkyldiglycolamides (TRDGA) in aqueous solution, in solid state, and in solvent extraction. Dalton Trans 2016; 45(46): 18484-18493.
| Crossref | Google Scholar | PubMed |

80  Charbonnel M-C, Berthon C, Berthon L, Boubals N, Burdet F, Duchesne M-T, et al. Complexation of Ln(III) and Am(III) with the hydrosoluble TEDGA: speciation and thermodynamics studies. Procedia Chem 2012; 7: 20-26.
| Crossref | Google Scholar |

81  Tian G, Teat SJ, Rao L. Structural and thermodynamic study of the complexes of Nd(III) with N,N,N’,N’-tetramethyl-3-oxa-glutaramide and the acid analogues. Inorg Chem 2014; 53(18): 9477-9485.
| Crossref | Google Scholar | PubMed |

82  Ansari SA, Gujar RB, Mohapatra PK. Complexation of tetraalkyl diglycolamides with trivalent f-cations in a room temperature ionic liquid: extraction and spectroscopic investigations. Dalton Trans 2017; 46(23): 7584-7593.
| Crossref | Google Scholar | PubMed |

83  Antonio MR, McAlister DR, Horwitz EP. An europium(III) diglycolamide complex: insights into the coordination chemistry of lanthanides in solvent extraction. Dalton Trans 2015; 44(2): 515-521.
| Crossref | Google Scholar | PubMed |

84  Kawasaki T, Okumura S, Sasaki Y, Ikeda Y. Crystal structures of Ln(III) (Ln = La, Pr, Nd, Sm, Eu, and Gd) complexes with N,N,N′,N′-tetraethyldiglycolamide associated with homoleptic [Ln(NO3)6)]3−. Bull Chem Soc Jpn 2014; 87: 294-300.
| Crossref | Google Scholar |

85  Wilden A, Kowalski PM, Klaß L, Kraus B, Kreft F, Modolo G, et al. Unprecedented inversion of selectivity and extraordinary difference in the complexation of trivalent f elements by diastereomers of a methylated diglycolamide. Chemistry 2019; 25(21): 5507-5513.
| Crossref | Google Scholar | PubMed |

86  Kannan S, Moody MA, Barnes CL, Duval PB. Lanthanum(III) and uranyl(VI) diglycolamide complexes: synthetic precursors and structural studies involving nitrate complexation. Inorg Chem 2008; 47(11): 4691-4695.
| Crossref | Google Scholar | PubMed |

87  Matloka K, Gelis A, Regalbuto M, Vandegrift G, Scott MJ. Highly efficient binding of trivalent f-elements from acidic media with a C3-symmetric tripodal ligand containing diglycolamide arms. Dalton Trans 2005; 23: 3719-3721.
| Crossref | Google Scholar | PubMed |

88  Dorweiler JD, Nemykin VN, Ley AN, Pike RD, Berry SM. Structural and NMR characterization of Sm(III), Eu(III), and Yb(III) complexes of an amide-based polydentate ligand exhibiting paramagnetic chemical exchange saturation transfer abilities. Inorg Chem 2009; 48(19): 9365-9376.
| Crossref | Google Scholar | PubMed |

89  Ellis RJ, Brigham DM, Delmau L, Ivanov AS, Williams NJ, Vo MN, et al. ‘Straining’ to separate the rare earths: how the lanthanide contraction impacts chelation by diglycolamide ligands. Inorg Chem 2017; 56(3): 1152-1160.
| Crossref | Google Scholar | PubMed |

90  Ali SM. Role of ligand straining in complexation of Eu3+–Am3+ ions by TPEN and PPDEN, scalar relativistic DFT exploration in conjunction with COSMO-RS. ACS Omega 2018; 3: 13104-13116.
| Crossref | Google Scholar | PubMed |

91  Peng X, Su J, Li H, Cui Y, Lee JY, Sun G. Theoretical elucidation of rare earth extraction and separation by diglycolamides from crystal structures and DFT simulations. J Rare Earths 2021; 39(7): 858-865.
| Crossref | Google Scholar |

92  Johnson KR, Driscoll DM, Damron JT, Ivanov AS, Jansone-Popova S. Size selective ligand tug of war strategy to separate rare earth elements. JACS Au 2023; 3(2): 584-591.
| Crossref | Google Scholar | PubMed |

93  Momen MA, Healy MR, Tsouris C, Jansone-Popova S, DePaoli DW, Moyer BA. Extraction chromatographic materials for clean hydrometallurgical separation of rare-earth elements using diglycolamide extractants. Ind Eng Chem Res 2019; 58(43): 20081-20089.
| Crossref | Google Scholar |

94  Stamberga D, Healy MR, Bryantsev VS, Albisser C, Karslyan Y, Reinhart B, et al. Structure activity relationship approach toward the improved separation of rare-earth elements using diglycolamides. Inorg Chem 2020; 59(23): 17620-17630.
| Crossref | Google Scholar | PubMed |

95  Tokheim BG, Kelly SS, Ronald RC, Nash KL. Synthesis and characterization of new unsymmetrical diglycolamide extractants for lanthanide ion partitioning: part one – straight-chain alkyl derivatives. J Radioanal Nucl Chem 2020; 326: 789-800.
| Crossref | Google Scholar |

96  Alyapyshev MY, Babain VA, Tkachenko LI, Eliseev II, Didenko AV, Petrov ML. Dependence of extraction properties of 2,6-dicarboxypyridine diamides on extractant structure. Solvent Extr Ion Exch 2011; 29: 619-636.
| Crossref | Google Scholar |

97  Narita H, Yaita T, Tamura K, Tachimori S. Solvent extraction of trivalent lanthanoid ions with N,N’-dimethyl-N,N’-diphenyl-3-oxapentanediamide. 1998; 81(4): 223-226.
| Crossref | Google Scholar |

98  Lewis FW, Harwood LM, Hudson MJ, Distler P, John J, Stamberg K, et al. Synthesis and evaluation of lipophilic BTBP ligands for An/Ln separation in nuclear waste treatment: the effect of alkyl substitution on extraction properties and implications for ligand design. European J Org Chem 2012; 2012: 1509-1519.
| Crossref | Google Scholar |

99  Verlinden B, Wilden A, Van Hecke K, J. M. Egberink R, Huskens J, Verboom W, Hupert W, et al. Solvent optimization studies for a new EURO-GANEX process with 2,2’-oxybis(N,N-di-n-decylpropanamide) (mTDDGA) and its radiolysis products. Solvent Extr Ion Exch 2023; 41(1): 59-87.
| Crossref | Google Scholar |

100  Zarzana CA, McAlpine J, Wilden A, Hupert M, Stärk A, Iqbal M, et al. Gamma Radiolysis of phenyl-substituted TODGAs: part II. Solvent Extr Ion Exch 2023; 41(5): 582-605.
| Crossref | Google Scholar |

101  Zarzana CA, McAlpine J, Wilden A, Hupert M, Stärk A, Iqbal M, et al. Gamma radiolysis of phenyl-substituted TODGAs: part I. Solvent Extr Ion Exch 2023; 41(5): 564-581.
| Crossref | Google Scholar |

102  Diaz Gomez L, Wilden A, Schneider D, Paparigas Z, Modolo G, Gullo MC, et al. Synthesis and evaluation of new modified diglycolamides with different stereochemistry for extraction of tri- and tetravalent metal ions. New J Chem 2023; 47(10): 4619-4627.
| Crossref | Google Scholar |

103  Galán H, Murillo MT, Sedano R, Núñez A, de Mendoza J, González‐Espartero A, et al. Hydrolysis and radiation stability of m-xylylene bis-diglycolamide: synthesis and quantitative study of degradation products by HPLC–APCI+. European J Org Chem 2011; 2011: 3959-3969.
| Crossref | Google Scholar |

104  Murillo MT, Espartero AG, Sánchez‐Quesada J, de Mendoza J, Prados P. Synthesis of pre‐organized bisdiglycolamides (BisDGA) and study of their extraction properties for actinides(III) and lanthanides(III). Solvent Extr Ion Exch 2009; 27(2): 107-131.
| Crossref | Google Scholar |

105  Ansari SA, Mohapatra PK, Iqbal M, Kandwal P, Huskens J, Verboom W. Novel diglycolamide-functionalized calix[4]arenes for actinide extraction and supported liquid membrane studies: role of substituents in the pendent arms and mass transfer modeling. J Memb Sci 2013; 430: 304-311.
| Crossref | Google Scholar |

106  Iqbal M, Mohapatra PK, Ansari SA, Huskens J, Verboom W. Preorganization of diglycolamides on the calix[4]arene platform and its effect on the extraction of Am(III)/Eu(III). Tetrahedron 2012; 68(38): 7840-7847.
| Crossref | Google Scholar |

107  Mohapatra PK, Sengupta A, Iqbal M, Huskens J, Verboom W. Diglycolamide-functionalized calix[4]arenes showing unusual complexation of actinide ions in room temperature ionic liquids: role of ligand structure, radiolytic stability, emission spectroscopy, and thermodynamic studies. Inorg Chem 2013; 52(5): 2533-2541.
| Crossref | Google Scholar | PubMed |

108  Mohapatra PK, Sengupta A, Iqbal M, Huskens J, Godbole SV, Verboom W. Remarkable acidity independent actinide extraction with a both-side diglycolamide-functionalized calix[4]arene. Dalton Trans 2013; 42(24): 8558-8562.
| Crossref | Google Scholar | PubMed |

109  Wu L, Fang Y, Jia Y, Yang Y, Liao J, Liu N, et al. Pillar[5]arene-based diglycolamides for highly efficient separation of americium(III) and europium(III). Dalton Trans 2014; 43(10): 3835-3858.
| Crossref | Google Scholar | PubMed |

110  Leoncini A, Mohapatra PK, Bhattacharyya A, Raut DR, Sengupta A, Verma PK, et al. Unique selectivity reversal in Am3+–Eu3+ extraction in a tripodal TREN-based diglycolamide in ionic liquid: extraction, luminescence, complexation and structural studies. Dalton Trans 2016; 45(6): 2476-2484.
| Crossref | Google Scholar | PubMed |

111  Jańczewski D, Reinhoudt DN, Verboom W, Hill C, Allignol C, Duchesne M-T. Tripodal diglycolamides as highly efficient extractants for f-elements. New J Chem 2008; 32: 490-495.
| Crossref | Google Scholar |

112  Ansari SA, Mohapatra PK, Leoncini A, Ali SM, Singhadeb A, Huskens J, et al. Unusual extraction of trivalent f-cations using diglycolamide dendrimers in a room temperature ionic liquid: extraction, spectroscopic and DFT studies. Dalton Trans 2017; 46(47): 16541-16550.
| Crossref | Google Scholar | PubMed |

113  Raut DR, Mohapatra PK, Ansari SA, Godbole SV, Iqbal M, Manna D, et al. Complexation of trivalent lanthanides and actinides with several novel diglycolamide-functionalized calix[4]arenes: solvent extraction, luminescence and theoretical studies. RSC Adv 2013; 3(24): 9296-9303.
| Crossref | Google Scholar |

114  Sengupta A, Godbole SV, Mohapatra PK, Iqbal M, Huskens J, Verboom W. Judd–Ofelt parameter of diglycolamide-functionalized calix[4]arene Eu3+ complexes in room temperature ionic liquid for structural analysis: effects of solvents and ligand stereochemistry. J Lumin 2014; 148: 174-180.
| Crossref | Google Scholar |

115  Wang Y, Wu G, Xu H, Ma H, Yuan L, Feng W. Radiolytic stability of pillar[5]arene-based diglycolamides. Radiochim Acta 2020; 108: 889-900.
| Crossref | Google Scholar |

116  Leoncini A, Ansari SA, Mohapatra PK, Sengupta A, Huskens J, Verboom W. Diglycolamide-functionalized poly(propylene imine) diaminobutane dendrimers for sequestration of trivalent f-elements: synthesis, extraction and complexation. Dalton Trans 2017; 46(2): 501-508.
| Crossref | Google Scholar | PubMed |

117  Qiu L, Li J, Zhang W, Gong A, Yuan X, Liu Y. Extraction and back-extraction behaviors of La(III), Ce(III), Pr(III), and Nd(III) single rare earth and mixed rare earth by TODGA. Sensors 2021; 21: 8316.
| Crossref | Google Scholar |

118  Liao C, Wu S, Cheng F, Wang S, Liu Y, Zhang B, et al. Clean separation technologies of rare earth resources in China. J Rare Earths 2013; 31: 331-336.
| Crossref | Google Scholar |

119  Sasaki Y, Matsumiya M, Tsuchida Y. Basic research on batchwise multi-stage extractions using TODGA for Dy/Nd separation. Anal Sci 2020; 36: 1303-1311.
| Crossref | Google Scholar | PubMed |

120  Sasaki Y, Kaneko M, Ban Y, Matsumiya M, Nakase M, Takeshita K. Multi-stage extraction and separation of Ln and An using TODGA and DTBA or DTPA accompanying pH adjustment with lactic acid and ethylenediamine. Sep Sci Technol 2022; 57: 2543-53.
| Crossref | Google Scholar |

121  Matsutani T, Sasaki Y, Katsuta S. Separation of light and middle lanthanides using multistage extraction with diglycolamide extractant. Anal Sci 2021; 37: 1603-1609.
| Crossref | Google Scholar | PubMed |

122  Ban Y, Suzuki H, Hotoku S, Kawasaki T, Sagawa H, Tsutsui N, et al. Extraction of trivalent rare earths and minor actinides from nitric acid with N,N,N’,N’-tetradodecyldiglycolamide (TDdDGA) by using mixer-settler extractors in a hot cell. Solvent Extr Ion Exch 2019; 37: 27-37.
| Crossref | Google Scholar |