Australian chemistry and drug discovery towards the development of antimalarials†
Brad E. Sleebs A B *A The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.
B Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.
Dr Sleebs is a medicinal chemist with extensive experience in early-stage Drug Discovery and Chemical Biology. Dr Sleebs received his PhD from La Trobe University and joined The Walter and Eliza Hall Institute as a Research Officer in 2005. In 2018 he was appointed a Laboratory Head in the Chemical Biology Division at the Walter and Eliza Hall Institute. His past research includes the development of anxiolytics and agents that target the BH3 family of proteins for the treatment of blood cancers. His current research focuses on developing small molecule probes to better understand biological processes that are essential to the survival of the malaria parasite and in collaboration with industry partners the development of novel antimalarial agents. |
Australian Journal of Chemistry 75(11) 849-864 https://doi.org/10.1071/CH22141
Submitted: 18 June 2022 Accepted: 18 July 2022 Published: 2 September 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)
Abstract
Malaria, a disease caused by the Plasmodium parasite, accounts for more than 450 000 deaths annually. The devastating impact of this disease is compounded by the emergence or risk of widespread resistance to current antimalarial drugs, underscoring the need to develop new therapies. Australian scientists are at the forefront of fundamental, clinical and surveillance research, and have made significant contributions to advancing the field of malaria research. A significant component of this research has been directed toward the development of new antimalarial therapies. This perspective summarises the recent endeavours by Australian researchers in chemistry and drug discovery sciences in the identification and development of new antimalarial therapies in the global challenge to treat and eliminate malaria.
Keywords: antimalarial, Australian chemistry, Australian drug discovery, drug development, high throughput screening, malaria, parasitology, pharmacology, Plasmodium.
References
[1] WHO. World Malaria Report. Geneva: World Health Organization: Geneva, Switzerland; 2020. Available at https://www.who.int/publications/i/item/9789240015791[2] Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial Lancet 2015, 386, 31.
| Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trialCrossref | GoogleScholarGoogle Scholar |
[3] EA Ashley, M Dhorda, RM Fairhurst, C Amaratunga, P Lim, S Suon, S Sreng, JM Anderson, S Mao, B Sam, C Sopha, CM Chuor, C Nguon, S Sovannaroth, S Pukrittayakamee, P Jittamala, K Chotivanich, K Chutasmit, C Suchatsoonthorn, R Runcharoen, TT Hien, NT Thuy-Nhien, NV Thanh, NH Phu, Y Htut, KT Han, KH Aye, OA Mokuolu, RR Olaosebikan, OO Folaranmi, M Mayxay, M Khanthavong, B Hongvanthong, PN Newton, MA Onyamboko, CI Fanello, AK Tshefu, N Mishra, N Valecha, AP Phyo, F Nosten, P Yi, R Tripura, S Borrmann, M Bashraheil, J Peshu, MA Faiz, A Ghose, MA Hossain, R Samad, MR Rahman, MM Hasan, A Islam, O Miotto, R Amato, B MacInnis, J Stalker, DP Kwiatkowski, Z Bozdech, A Jeeyapant, PY Cheah, T Sakulthaew, J Chalk, B Intharabut, K Silamut, SJ Lee, B Vihokhern, C Kunasol, M Imwong, J Tarning, WJ Taylor, S Yeung, CJ Woodrow, JA Flegg, D Das, J Smith, M Venkatesan, CV Plowe, K Stepniewska, PJ Guerin, AM Dondorp, NP Day, NJ White, Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 2014, 371, 411.
| Spread of artemisinin resistance in Plasmodium falciparum malaria.Crossref | GoogleScholarGoogle Scholar |
[4] A Uwimana, E Legrand, BH Stokes, J-LM Ndikumana, M Warsame, N Umulisa, D Ngamije, T Munyaneza, J-B Mazarati, K Munguti, P Campagne, A Criscuolo, F Ariey, M Murindahabi, P Ringwald, DA Fidock, A Mbituyumuremyi, D Menard, Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med 2020, 26, 1602.
| Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda.Crossref | GoogleScholarGoogle Scholar |
[5] JN Burrows, S Duparc, WE Gutteridge, R Hooft van Huijsduijnen, W Kaszubska, F Macintyre, S Mazzuri, JJ Möhrle, TNC Wells, New developments in anti-malarial target candidate and product profiles. Malar J 2017, 16, 26.
| New developments in anti-malarial target candidate and product profiles.Crossref | GoogleScholarGoogle Scholar |
[6] SA Charman, S Arbe-Barnes, IC Bathurst, R Brun, M Campbell, WN Charman, FCK Chiu, J Chollet, JC Craft, DJ Creek, Y Dong, H Matile, M Maurer, J Morizzi, T Nguyen, P Papastogiannidis, C Scheurer, DM Shackleford, K Sriraghavan, L Stingelin, Y Tang, H Urwyler, X Wang, KL White, S Wittlin, L Zhou, JL Vennerstrom, Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc Natl Acad Sci U S A 2011, 108, 4400.
| Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria.Crossref | GoogleScholarGoogle Scholar |
[7] TD Ashton, SM Devine, JJ Möhrle, B Laleu, JN Burrows, SA Charman, DJ Creek, BE Sleebs, The development process for discovery and clinical advancement of modern antimalarials. J Med Chem 2019, 62, 10526.
| The development process for discovery and clinical advancement of modern antimalarials.Crossref | GoogleScholarGoogle Scholar |
[8] DL Doolan, Malaria research in Australia: looking through the lens of the past towards the future. Int J Parasitol 2021, 51, 1255.
| Malaria research in Australia: looking through the lens of the past towards the future.Crossref | GoogleScholarGoogle Scholar |
[9] S Duffy, VM Avery, Development and optimization of a novel 384-well anti-malarial imaging assay validated for high-throughput screening. Am J Trop Med Hyg 2012, 86, 84.
| Development and optimization of a novel 384-well anti-malarial imaging assay validated for high-throughput screening.Crossref | GoogleScholarGoogle Scholar |
[10] WA Guiguemde, AA Shelat, D Bouck, S Duffy, GJ Crowther, PH Davis, DC Smithson, M Connelly, J Clark, F Zhu, MB Jiménez-Díaz, MS Martinez, EB Wilson, AK Tripathi, J Gut, ER Sharlow, I Bathurst, F El Mazouni, JW Fowble, I Forquer, PL McGinley, S Castro, I Angulo-Barturen, S Ferrer, PJ Rosenthal, JL Derisi, DJ Sullivan, JS Lazo, DS Roos, MK Riscoe, MA Phillips, PK Rathod, WC Van Voorhis, VM Avery, RK Guy, Chemical genetics of Plasmodium falciparum. Nature 2010, 465, 311.
| Chemical genetics of Plasmodium falciparum.Crossref | GoogleScholarGoogle Scholar |
[11] VM Avery, S Bashyam, JN Burrows, S Duffy, G Papadatos, S Puthukkuti, Y Sambandan, S Singh, T Spangenberg, D Waterson, P Willis, Screening and hit evaluation of a chemical library against blood-stage Plasmodium falciparum. Malar J 2014, 13, 190.
| Screening and hit evaluation of a chemical library against blood-stage Plasmodium falciparum.Crossref | GoogleScholarGoogle Scholar |
[12] C Le Manach, D Gonzàlez Cabrera, F Douelle, AT Nchinda, Y Younis, D Taylor, L Wiesner, KL White, E Ryan, C March, S Duffy, VM Avery, D Waterson, MJ Witty, S Wittlin, SA Charman, LJ Street, K Chibale, Medicinal chemistry optimization of antiplasmodial imidazopyridazine hits from high throughput screening of a SoftFocus kinase library: part 1. J Med Chem 2014, 57, 2789.
| Medicinal chemistry optimization of antiplasmodial imidazopyridazine hits from high throughput screening of a SoftFocus kinase library: part 1.Crossref | GoogleScholarGoogle Scholar |
[13] CD Edlin, G Morgans, S Winks, S Duffy, VM Avery, S Wittlin, D Waterson, J Burrows, J Bryans, Identification and in-vitro ADME assessment of a series of novel anti-malarial agents suitable for hit-to-lead chemistry. ACS Med Chem Lett 2012, 3, 570.
| Identification and in-vitro ADME assessment of a series of novel anti-malarial agents suitable for hit-to-lead chemistry.Crossref | GoogleScholarGoogle Scholar |
[14] S Duffy, VM Avery, Identification of inhibitors of Plasmodium falciparum gametocyte development. Malar J 2013, 12, 408.
| Identification of inhibitors of Plasmodium falciparum gametocyte development.Crossref | GoogleScholarGoogle Scholar |
[15] L Lucantoni, DA Fidock, VM Avery, Luciferase-based, high-throughput assay for screening and profiling transmission-blocking compounds against Plasmodium falciparum gametocytes. Antimicrob Agents Chemother 2016, 60, 2097.
| Luciferase-based, high-throughput assay for screening and profiling transmission-blocking compounds against Plasmodium falciparum gametocytes.Crossref | GoogleScholarGoogle Scholar |
[16] S Duffy, S Loganathan, JP Holleran, VM Avery, Large-scale production of Plasmodium falciparum gametocytes for malaria drug discovery. Nat Protoc 2016, 11, 976.
| Large-scale production of Plasmodium falciparum gametocytes for malaria drug discovery.Crossref | GoogleScholarGoogle Scholar |
[17] S Duffy, ML Sykes, AJ Jones, TB Shelper, M Simpson, R Lang, SA Poulsen, BE Sleebs, VM Avery, Screening the medicines for malaria venture pathogen box across multiple pathogens reclassifies starting points for open-source drug discovery. Antimicrob Agents Chemother 2017, 61, e00379-17.
| Screening the medicines for malaria venture pathogen box across multiple pathogens reclassifies starting points for open-source drug discovery.Crossref | GoogleScholarGoogle Scholar |
[18] L Lucantoni, F Silvestrini, M Signore, G Siciliano, M Eldering, KJ Dechering, VM Avery, P Alano, A simple and predictive phenotypic high content imaging assay for Plasmodium falciparum mature gametocytes to identify malaria transmission blocking compounds. Sci Rep 2015, 5, 16414.
| A simple and predictive phenotypic high content imaging assay for Plasmodium falciparum mature gametocytes to identify malaria transmission blocking compounds.Crossref | GoogleScholarGoogle Scholar |
[19] WC Van Voorhis, JH Adams, R Adelfio, V Ahyong, MH Akabas, P Alano, A Alday, Y Alemán Resto, A Alsibaee, A Alzualde, KT Andrews, SV Avery, VM Avery, L Ayong, M Baker, S Baker, C Ben Mamoun, S Bhatia, Q Bickle, L Bounaadja, T Bowling, J Bosch, LE Boucher, FF Boyom, J Brea, M Brennan, A Burton, CR Caffrey, G Camarda, M Carrasquilla, D Carter, M Belen Cassera, K Chih-Chien Cheng, W Chindaudomsate, A Chubb, BL Colon, DD Colón-López, Y Corbett, GJ Crowther, N Cowan, S D’Alessandro, N Le Dang, M Delves, JL DeRisi, AY Du, S Duffy, S Abd El-Salam El-Sayed, MT Ferdig, JA Fernández Robledo, DA Fidock, I Florent, PV Fokou, A Galstian, FJ Gamo, S Gokool, B Gold, T Golub, GM Goldgof, R Guha, WA Guiguemde, N Gural, RK Guy, MA Hansen, KK Hanson, A Hemphill, R Hooft van Huijsduijnen, T Horii, P Horrocks, TB Hughes, C Huston, I Igarashi, K Ingram-Sieber, MA Itoe, A Jadhav, A Naranuntarat Jensen, LT Jensen, RH Jiang, A Kaiser, J Keiser, T Ketas, S Kicka, S Kim, K Kirk, VP Kumar, DE Kyle, MJ Lafuente, S Landfear, N Lee, S Lee, AM Lehane, F Li, D Little, L Liu, M Llinás, MI Loza, A Lubar, L Lucantoni, I Lucet, L Maes, D Mancama, NR Mansour, S March, S McGowan, I Medina Vera, S Meister, L Mercer, J Mestres, AN Mfopa, RN Misra, S Moon, JP Moore, F Morais Rodrigues da Costa, J Müller, A Muriana, S Nakazawa Hewitt, B Nare, C Nathan, N Narraidoo, S Nawaratna, KK Ojo, D Ortiz, G Panic, G Papadatos, S Parapini, K Patra, N Pham, S Prats, DM Plouffe, SA Poulsen, A Pradhan, C Quevedo, RJ Quinn, CA Rice, M Abdo Rizk, A Ruecker St, R Onge, R Salgado Ferreira, J Samra, NG Robinett, U Schlecht, M Schmitt, F Silva Villela, F Silvestrini, R Sinden, DA Smith, T Soldati, A Spitzmüller, SM Stamm, DJ Sullivan, W Sullivan, S Suresh, BM Suzuki, Y Suzuki, SJ Swamidass, D Taramelli, LR Tchokouaha, A Theron, D Thomas, KF Tonissen, S Townson, AK Tripathi, V Trofimov, KO Udenze, I Ullah, C Vallieres, E Vigil, JM Vinetz, P Voong Vinh, H Vu, NA Watanabe, K Weatherby, PM White, AF Wilks, EA Winzeler, E Wojcik, M Wree, W Wu, N Yokoyama, PH Zollo, N Abla, B Blasco, J Burrows, B Laleu, D Leroy, T Spangenberg, T Wells, PA Willis, Open source drug discovery with the malaria box compound collection for neglected diseases and beyond. PLoS Pathog 2016, 12, e1005763.
| Open source drug discovery with the malaria box compound collection for neglected diseases and beyond.Crossref | GoogleScholarGoogle Scholar |
[20] L Lucantoni, S Duffy, SH Adjalley, DA Fidock, VM Avery, Identification of MMV malaria box inhibitors of Plasmodium falciparum early-stage gametocytes using a luciferase-based high-throughput assay. Antimicrob Agents Chemother 2013, 57, 6050.
| Identification of MMV malaria box inhibitors of Plasmodium falciparum early-stage gametocytes using a luciferase-based high-throughput assay.Crossref | GoogleScholarGoogle Scholar |
[21] O Looker, MG Dans, HE Bullen, BE Sleebs, BS Crabb, PR Gilson, The medicines for malaria venture malaria box contains inhibitors of protein secretion in Plasmodium falciparum blood stage parasites. Traffic 2022,
| The medicines for malaria venture malaria box contains inhibitors of protein secretion in Plasmodium falciparum blood stage parasites.Crossref | GoogleScholarGoogle Scholar |
[22] MG Dans, GE Weiss, DW Wilson, BE Sleebs, BS Crabb, TF de Koning-Ward, PR Gilson, Screening the medicines for malaria venture pathogen box for invasion and egress inhibitors of the blood stage of Plasmodium falciparum reveals several inhibitory compounds. Int J Parasitol 2020, 50, 235.
| Screening the medicines for malaria venture pathogen box for invasion and egress inhibitors of the blood stage of Plasmodium falciparum reveals several inhibitory compounds.Crossref | GoogleScholarGoogle Scholar |
[23] BK Dickerman, B Elsworth, SA Cobbold, CQ Nie, MJ McConville, BS Crabb, PR Gilson, Identification of inhibitors that dually target the new permeability pathway and dihydroorotate dehydrogenase in the blood stage of Plasmodium falciparum. Sci Rep 2016, 6, 37502.
| Identification of inhibitors that dually target the new permeability pathway and dihydroorotate dehydrogenase in the blood stage of Plasmodium falciparum.Crossref | GoogleScholarGoogle Scholar |
[24] NJ Spillman, RJW Allen, CW McNamara, BKS Yeung, EA Winzeler, TT Diagana, K Kirk, Na+ regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials. Cell Host Microbe 2013, 13, 227.
| Na+ regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials.Crossref | GoogleScholarGoogle Scholar |
[25] MB Jiménez-Díaz, D Ebert, Y Salinas, A Pradhan, AM Lehane, ME Myrand-Lapierre, KG O’Loughlin, DM Shackleford, M Justino de Almeida, AK Carrillo, JA Clark, AS Dennis, J Diep, X Deng, S Duffy, AN Endsley, G Fedewa, WA Guiguemde, MG Gómez, G Holbrook, J Horst, CC Kim, J Liu, MC Lee, A Matheny, MS Martínez, G Miller, A Rodríguez-Alejandre, L Sanz, M Sigal, NJ Spillman, PD Stein, Z Wang, F Zhu, D Waterson, S Knapp, A Shelat, VM Avery, DA Fidock, FJ Gamo, SA Charman, JC Mirsalis, H Ma, S Ferrer, K Kirk, I Angulo-Barturen, DE Kyle, JL DeRisi, DM Floyd, RK Guy, (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proc Natl Acad Sci U S A 2014, 111, E5455.
| (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium.Crossref | GoogleScholarGoogle Scholar |
[26] NJ Spillman, RJW Allen, K Kirk, Na+ extrusion imposes an acid load on the intraerythrocytic malaria parasite. Mol Biochem Parasitol 2013, 189, 1.
| Na+ extrusion imposes an acid load on the intraerythrocytic malaria parasite.Crossref | GoogleScholarGoogle Scholar |
[27] AM Lehane, MC Ridgway, E Baker, K Kirk, Diverse chemotypes disrupt ion homeostasis in the malaria parasite. Mol Microbiol 2014, 94, 327.
| Diverse chemotypes disrupt ion homeostasis in the malaria parasite.Crossref | GoogleScholarGoogle Scholar |
[28] JEO Rosling, MC Ridgway, RL Summers, K Kirk, AM Lehane, Biochemical characterization and chemical inhibition of PfATP4-associated Na+-ATPase activity in Plasmodium falciparum membranes. J Biol Chem 2018, 293, 13327.
| Biochemical characterization and chemical inhibition of PfATP4-associated Na+-ATPase activity in Plasmodium falciparum membranes.Crossref | GoogleScholarGoogle Scholar |
[29] ASM Dennis, JEO Rosling, AM Lehane, K Kirk, Diverse antimalarials from whole-cell phenotypic screens disrupt malaria parasite ion and volume homeostasis. Sci Rep 2018, 8, 8795.
| Diverse antimalarials from whole-cell phenotypic screens disrupt malaria parasite ion and volume homeostasis.Crossref | GoogleScholarGoogle Scholar |
[30] SV Hapuarachchi, SA Cobbold, SH Shafik, AS Dennis, MJ McConville, RE Martin, K Kirk, AM Lehane, The malaria parasite’s lactate transporter PfFNT is the target of antiplasmodial compounds identified in whole cell phenotypic screens. PLoS Pathog 2017, 13, e1006180.
| The malaria parasite’s lactate transporter PfFNT is the target of antiplasmodial compounds identified in whole cell phenotypic screens.Crossref | GoogleScholarGoogle Scholar |
[31] RV Marchetti, AM Lehane, SH Shafik, M Winterberg, RE Martin, K Kirk, A lactate and formate transporter in the intraerythrocytic malaria parasite, Plasmodium falciparum. Nat Commun 2015, 6, 6721.
| A lactate and formate transporter in the intraerythrocytic malaria parasite, Plasmodium falciparum.Crossref | GoogleScholarGoogle Scholar |
[32] E Yeh, JL DeRisi, Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol 2011, 9, e1001138.
| Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum.Crossref | GoogleScholarGoogle Scholar |
[33] T Uddin, GI McFadden, CD Goodman, Validation of putative apicoplast-targeting drugs using a chemical supplementation assay in cultured human malaria parasites. Antimicrob Agents Chemother 2018, 62, e01161-17.
| Validation of putative apicoplast-targeting drugs using a chemical supplementation assay in cultured human malaria parasites.Crossref | GoogleScholarGoogle Scholar |
[34] A Paiardini, RS Bamert, K Kannan-Sivaraman, N Drinkwater, SN Mistry, PJ Scammells, S McGowan, Screening the medicines for malaria venture "malaria box" against the Plasmodium falciparum aminopeptidases, M1, M17 and M18. PLoS One 2015, 10, e0115859.
| Screening the medicines for malaria venture "malaria box" against the Plasmodium falciparum aminopeptidases, M1, M17 and M18.Crossref | Plasmodium falciparum aminopeptidases, M1, M17 and M18.&journal=PLoS One&volume=10&pages=e0115859-&publication_year=2015&author=A%20Paiardini&hl=en&doi=10.1371/journal.pone.0115859" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar |
[35] IS Lucet, A Tobin, D Drewry, AF Wilks, C Doerig, Plasmodium kinases as targets for new-generation antimalarials. Future Med Chem 2012, 4, 2295.
| Plasmodium kinases as targets for new-generation antimalarials.Crossref | GoogleScholarGoogle Scholar |
[36] BE Sleebs, KE Jarman, S Frolich, W Wong, J Healer, W Dai, IS Lucet, DW Wilson, AF Cowman, Development and application of a high-throughput screening assay for identification of small molecule inhibitors of the P. falciparum reticulocyte binding-like homologue 5 protein. Int J Parasitol Drugs Drug Resist 2020, 14, 188.
| Development and application of a high-throughput screening assay for identification of small molecule inhibitors of the P. falciparum reticulocyte binding-like homologue 5 protein.Crossref | GoogleScholarGoogle Scholar |
[37] H Vu, L Pedro, T Mak, B McCormick, J Rowley, M Liu, A Di Capua, B Williams-Noonan, NB Pham, R Pouwer, B Nguyen, KT Andrews, T Skinner-Adams, J Kim, WGJ Hol, R Hui, GJ Crowther, WC Van Voorhis, RJ Quinn, Fragment-based screening of a natural product library against 62 potential malaria drug targets employing native mass spectrometry. ACS Infect Dis 2018, 4, 431.
| Fragment-based screening of a natural product library against 62 potential malaria drug targets employing native mass spectrometry.Crossref | GoogleScholarGoogle Scholar |
[38] H Vu, C Roullier, M Campitelli, KR Trenholme, DL Gardiner, KT Andrews, T Skinner-Adams, GJ Crowther, WC Van Voorhis, RJ Quinn, Plasmodium gametocyte inhibition identified from a natural-product-based fragment library. ACS Chem Biol 2013, 8, 2654.
| Plasmodium gametocyte inhibition identified from a natural-product-based fragment library.Crossref | GoogleScholarGoogle Scholar |
[39] SA Cobbold, MJ McConville, Determining the mode of action of antimalarial drugs using time-resolved LC-MS-based metabolite profiling. Methods Mol Biol 2019, 1859, 225.
| Determining the mode of action of antimalarial drugs using time-resolved LC-MS-based metabolite profiling.Crossref | GoogleScholarGoogle Scholar |
[40] SA Cobbold, HH Chua, B Nijagal, DJ Creek, SA Ralph, MJ McConville, Metabolic dysregulation induced in Plasmodium falciparum by dihydroartemisinin and other front-line antimalarial drugs. J Infect Dis 2016, 213, 276.
| Metabolic dysregulation induced in Plasmodium falciparum by dihydroartemisinin and other front-line antimalarial drugs.Crossref | GoogleScholarGoogle Scholar |
[41] G Siddiqui, C Giannangelo, A De Paoli, AK Schuh, KC Heimsch, D Anderson, TG Brown, CA MacRaild, J Wu, X Wang, Y Dong, JL Vennerstrom, K Becker, DJ Creek, Peroxide antimalarial drugs target redox homeostasis in Plasmodium falciparum infected red blood cells. ACS Infect Dis 2022, 8, 210.
| Peroxide antimalarial drugs target redox homeostasis in Plasmodium falciparum infected red blood cells.Crossref | GoogleScholarGoogle Scholar |
[42] C Giannangelo, G Siddiqui, A De Paoli, BM Anderson, LE Edgington-Mitchell, SA Charman, DJ Creek, System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion. PLoS Pathog 2020, 16, e1008485.
| System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion.Crossref | GoogleScholarGoogle Scholar |
[43] GW Birrell, MP Challis, A De Paoli, D Anderson, SM Devine, GD Heffernan, DP Jacobus, MD Edstein, G Siddiqui, DJ Creek, Multi-omic characterization of the mode of action of a potent new antimalarial compound, JPC-3210, against Plasmodium falciparum. Mol Cell Proteomics 2020, 19, 308.
| Multi-omic characterization of the mode of action of a potent new antimalarial compound, JPC-3210, against Plasmodium falciparum.Crossref | GoogleScholarGoogle Scholar |
[44] G Siddiqui, A Srivastava, AS Russell, DJ Creek, Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin-resistant Plasmodium falciparum. J Infect Dis 2017, 215, 1435.
| Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin-resistant Plasmodium falciparum.Crossref | GoogleScholarGoogle Scholar |
[45] DJ Creek, HH Chua, SA Cobbold, B Nijagal, JI MacRae, BK Dickerman, PR Gilson, SA Ralph, MJ McConville, Metabolomics-based screening of the malaria box reveals both novel and established mechanisms of action. Antimicrob Agents Chemother 2016, 60, 6650.
| Metabolomics-based screening of the malaria box reveals both novel and established mechanisms of action.Crossref | GoogleScholarGoogle Scholar |
[46] SA Charman, A Andreu, H Barker, S Blundell, A Campbell, M Campbell, G Chen, FCK Chiu, E Crighton, K Katneni, J Morizzi, R Patil, T Pham, E Ryan, J Saunders, DM Shackleford, KL White, L Almond, M Dickins, DA Smith, JJ Moehrle, JN Burrows, N Abla, An in vitro toolbox to accelerate anti-malarial drug discovery and development. Malar J 2020, 19, 1.
| An in vitro toolbox to accelerate anti-malarial drug discovery and development.Crossref | GoogleScholarGoogle Scholar |
[47] Y Dong, S Wittlin, K Sriraghavan, J Chollet, SA Charman, WN Charman, C Scheurer, H Urwyler, J Santo Tomas, C Snyder, DJ Creek, J Morizzi, M Koltun, H Matile, X Wang, M Padmanilayam, Y Tang, A Dorn, R Brun, JL Vennerstrom, The structure−activity relationship of the antimalarial ozonide arterolane (OZ277). J Med Chem 2010, 53, 481.
| The structure−activity relationship of the antimalarial ozonide arterolane (OZ277).Crossref | GoogleScholarGoogle Scholar |
[48] Y Dong, X Wang, S Kamaraj, VJ Bulbule, FCK Chiu, J Chollet, M Dhanasekaran, CD Hein, P Papastogiannidis, J Morizzi, DM Shackleford, H Barker, E Ryan, C Scheurer, Y Tang, Q Zhao, L Zhou, KL White, H Urwyler, WN Charman, H Matile, S Wittlin, SA Charman, JL Vennerstrom, Structure–activity relationship of the antimalarial ozonide artefenomel (OZ439). J Med Chem 2017, 60, 2654.
| Structure–activity relationship of the antimalarial ozonide artefenomel (OZ439).Crossref | GoogleScholarGoogle Scholar |
[49] JJ Moehrle, S Duparc, C Siethoff, PL van Giersbergen, JC Craft, S Arbe-Barnes, SA Charman, M Gutierrez, S Wittlin, JL Vennerstrom, First-in-man safety and pharmacokinetics of synthetic ozonide OZ439 demonstrates an improved exposure profile relative to other peroxide antimalarials. Br J Clin Pharmacol 2013, 75, 524.
| First-in-man safety and pharmacokinetics of synthetic ozonide OZ439 demonstrates an improved exposure profile relative to other peroxide antimalarials.Crossref | GoogleScholarGoogle Scholar |
[50] MA Phillips, J Lotharius, K Marsh, J White, A Dayan, KL White, JW Njoroge, F El Mazouni, Y Lao, S Kokkonda, DR Tomchick, X Deng, T Laird, SN Bhatia, S March, CL Ng, DA Fidock, S Wittlin, M Lafuente-Monasterio, FJ Benito, LM Alonso, MS Martinez, MB Jimenez-Diaz, SF Bazaga, I Angulo-Barturen, JN Haselden, J Louttit, Y Cui, A Sridhar, AM Zeeman, C Kocken, R Sauerwein, K Dechering, VM Avery, S Duffy, M Delves, R Sinden, A Ruecker, KS Wickham, R Rochford, J Gahagen, L Iyer, E Riccio, J Mirsalis, I Bathhurst, T Rueckle, X Ding, B Campo, D Leroy, MJ Rogers, PK Rathod, JN Burrows, SA Charman, A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci Transl Med 2015, 7, 296ra111.
| A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria.Crossref | GoogleScholarGoogle Scholar |
[51] MA Phillips, KL White, S Kokkonda, X Deng, J White, F El Mazouni, K Marsh, DR Tomchick, K Manjalanagara, KR Rudra, G Wirjanata, R Noviyanti, RN Price, J Marfurt, DM Shackleford, FCK Chiu, M Campbell, MB Jimenez-Diaz, SF Bazaga, I Angulo-Barturen, MS Martinez, M Lafuente-Monasterio, W Kaminsky, K Silue, AM Zeeman, C Kocken, D Leroy, B Blasco, E Rossignol, T Rueckle, D Matthews, JN Burrows, D Waterson, MJ Palmer, PK Rathod, SA Charman, A triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with improved drug-like properties for treatment and prevention of malaria. ACS Infect Dis 2016, 2, 945.
| A triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with improved drug-like properties for treatment and prevention of malaria.Crossref | GoogleScholarGoogle Scholar |
[52] T Paquet, C Le Manach, DG Cabrera, Y Younis, PP Henrich, TS Abraham, MCS Lee, R Basak, S Ghidelli-Disse, MJ Lafuente-Monasterio, M Bantscheff, A Ruecker, AM Blagborough, SE Zakutansky, AM Zeeman, KL White, DM Shackleford, J Mannila, J Morizzi, C Scheurer, I Angulo-Barturen, MS Martínez, S Ferrer, LM Sanz, FJ Gamo, J Reader, M Botha, KJ Dechering, RW Sauerwein, A Tungtaeng, P Vanachayangkul, CS Lim, J Burrows, MJ Witty, KC Marsh, C Bodenreider, R Rochford, SM Solapure, MB Jiménez-Díaz, S Wittlin, SA Charman, C Donini, B Campo, LM Birkholtz, KK Hanson, G Drewes, CHM Kocken, MJ Delves, D Leroy, DA Fidock, D Waterson, LJ Street, K Chibale, Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci Transl Med 2017, 9, eaad9735.
| Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase.Crossref | GoogleScholarGoogle Scholar |
[53] C Brunschwig, N Lawrence, D Taylor, E Abay, M Njoroge, GS Basarab, C Le Manach, T Paquet, DG Cabrera, AT Nchinda, C de Kock, L Wiesner, P Denti, D Waterson, B Blasco, D Leroy, MJ Witty, C Donini, J Duffy, S Wittlin, KL White, SA Charman, MB Jiménez-Díaz, I Angulo-Barturen, E Herreros, FJ Gamo, R Rochford, D Mancama, TL Coetzer, ME van der Watt, J Reader, LM Birkholtz, KC Marsh, SM Solapure, JE Burke, JA McPhail, M Vanaerschot, DA Fidock, PV Fish, P Siegl, DA Smith, G Wirjanata, R Noviyanti, RN Price, J Marfurt, KD Silue, LJ Street, K Chibale, UCT943, a next-generation Plasmodium falciparum PI4K inhibitor preclinical candidate for the treatment of malaria. Antimicrob Agents Chemother 2018, 62, e00012-18.
| UCT943, a next-generation Plasmodium falciparum PI4K inhibitor preclinical candidate for the treatment of malaria.Crossref | GoogleScholarGoogle Scholar |
[54] KA Collins, AN Abd-Rahman, L Marquart, E Ballard, N Gobeau, P Griffin, S Chalon, JJ Möhrle, JS McCarthy, Antimalarial activity of artefenomel against asexual parasites and transmissible gametocytes during experimental blood-stage Plasmodium vivax infection. J Infect Dis 2022, 225, 1062.
| Antimalarial activity of artefenomel against asexual parasites and transmissible gametocytes during experimental blood-stage Plasmodium vivax infection.Crossref | GoogleScholarGoogle Scholar |
[55] JS McCarthy, M Baker, P O’Rourke, L Marquart, P Griffin, R Hooft van Huijsduijnen, JJ Möhrle, J Antimicrob Chemother 2016, 71, 2620.
| Crossref | GoogleScholarGoogle Scholar |
[56] JS McCarthy, AN Abd-Rahman, KA Collins, L Marquart, P Griffin, A Kümmel, A Fuchs, C Winnips, V Mishra, K Csermak-Renner, JP Jain, P Gandhi, Defining the antimalarial activity of cipargamin in healthy volunteers experimentally infected with blood-stage Plasmodium falciparum. Antimicrob Agents Chemother 2021, 65, e01423-20.
| Defining the antimalarial activity of cipargamin in healthy volunteers experimentally infected with blood-stage Plasmodium falciparum.Crossref | GoogleScholarGoogle Scholar |
[57] JS McCarthy, T Rückle, SL Elliott, E Ballard, KA Collins, L Marquart, P Griffin, S Chalon, JJ Möhrle, A single-dose combination study with the experimental antimalarials artefenomel and DSM265 to determine safety and antimalarial activity against blood-stage Plasmodium falciparum in healthy volunteers. Antimicrob Agents Chemother 2019, 64, e01371-19.
| A single-dose combination study with the experimental antimalarials artefenomel and DSM265 to determine safety and antimalarial activity against blood-stage Plasmodium falciparum in healthy volunteers.Crossref | GoogleScholarGoogle Scholar |
[58] KA Collins, T Rückle, S Elliott, L Marquart, E Ballard, S Chalon, P Griffin, JJ Möhrle, JS McCarthy, DSM265 at 400 milligrams clears asexual stage parasites but not mature gametocytes from the blood of healthy subjects experimentally infected with Plasmodium falciparum. Antimicrob Agents Chemother 2019, 63, e01837-18.
| DSM265 at 400 milligrams clears asexual stage parasites but not mature gametocytes from the blood of healthy subjects experimentally infected with Plasmodium falciparum.Crossref | GoogleScholarGoogle Scholar |
[59] P Sinxadi, C Donini, H Johnstone, G Langdon, L Wiesner, E Allen, S Duparc, S Chalon, JS McCarthy, U Lorch, K Chibale, J Möhrle, KI Barnes, Safety, tolerability, pharmacokinetics, and antimalarial activity of the novel Plasmodium phosphatidylinositol 4-kinase inhibitor MMV390048 in healthy volunteers. Antimicrob Agents Chemother 2020, 64, e01896-19.
| Safety, tolerability, pharmacokinetics, and antimalarial activity of the novel Plasmodium phosphatidylinositol 4-kinase inhibitor MMV390048 in healthy volunteers.Crossref | GoogleScholarGoogle Scholar |
[60] JS McCarthy, C Donini, S Chalon, J Woodford, L Marquart, KA Collins, FD Rozenberg, DA Fidock, MH Cherkaoui-Rbati, N Gobeau, JJ Möhrle, A Phase 1, placebo-controlled, randomized, single ascending dose study and a volunteer infection study to characterize the safety, pharmacokinetics, and antimalarial activity of the Plasmodium phosphatidylinositol 4-kinase inhibitor MMV390048. Clin Infect Dis 2020, 71, e657.
| A Phase 1, placebo-controlled, randomized, single ascending dose study and a volunteer infection study to characterize the safety, pharmacokinetics, and antimalarial activity of the Plasmodium phosphatidylinositol 4-kinase inhibitor MMV390048.Crossref | GoogleScholarGoogle Scholar |
[61] AH Gaur, JS McCarthy, JC Panetta, RH Dallas, J Woodford, L Tang, AM Smith, TB Stewart, KC Branum, BB Freeman III, ND Patel, E John, S Chalon, S Ost, RN Heine, JL Richardson, R Christensen, PM Flynn, Y Van Gessel, B Mitasev, JJ Möhrle, F Gusovsky, L Bebrevska, RK Guy, Safety, tolerability, pharmacokinetics, and antimalarial efficacy of a novel Plasmodium falciparum ATP4 inhibitor SJ733: a first-in-human and induced blood-stage malaria phase 1a/b trial. Lancet Infect Dis 2020, 20, 964.
| Safety, tolerability, pharmacokinetics, and antimalarial efficacy of a novel Plasmodium falciparum ATP4 inhibitor SJ733: a first-in-human and induced blood-stage malaria phase 1a/b trial.Crossref | GoogleScholarGoogle Scholar |
[62] A Krause, J Dingemanse, A Mathis, L Marquart, JJ Möhrle, JS McCarthy, Pharmacokinetic/pharmacodynamic modelling of the antimalarial effect of Actelion-451840 in an induced blood stage malaria study in healthy subjects Br J Clin Pharmacol 2016, 82, 412.
| Pharmacokinetic/pharmacodynamic modelling of the antimalarial effect of Actelion-451840 in an induced blood stage malaria study in healthy subjectsCrossref | GoogleScholarGoogle Scholar |
[63] BE Barber, M Fernandez, HB Patel, C Barcelo, SD Woolley, H Patel, S Llewellyn, AN Abd-Rahman, S Sharma, M Jain, A Ghoghari, I Di Resta, A Fuchs, I Deni, T Yeo, S Mok, DA Fidock, S Chalon, JJ Möhrle, D Parmar, JS McCarthy, K Kansagra, Safety, pharmacokinetics, and antimalarial activity of the novel triaminopyrimidine ZY-19489: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study, pilot food-effect study, and volunteer infection study. Lancet Infect Dis 2022, 22, 879.
| Safety, pharmacokinetics, and antimalarial activity of the novel triaminopyrimidine ZY-19489: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study, pilot food-effect study, and volunteer infection study.Crossref | GoogleScholarGoogle Scholar |
[64] RA Davis, MS Buchanan, S Duffy, VM Avery, SA Charman, WN Charman, KL White, DM Shackleford, MD Edstein, KT Andrews, D Camp, RJ Quinn, Antimalarial activity of pyrroloiminoquinones from the Australian marine sponge Zyzzya sp. J Med Chem 2012, 55, 5851.
| Antimalarial activity of pyrroloiminoquinones from the Australian marine sponge Zyzzya sp.Crossref | GoogleScholarGoogle Scholar |
[65] MSJ Arnold, JR Macdonald, RJ Quinn, TS Skinner-Adams, KT Andrews, GM Fisher, Antiplasmodial activity of the natural product compounds alstonine and himbeline. Int J Parasitol Drugs Drug Resist 2021, 16, 17.
| Antiplasmodial activity of the natural product compounds alstonine and himbeline.Crossref | GoogleScholarGoogle Scholar |
[66] R Kumar, S Duffy, VM Avery, RA Davis, Synthesis of antimalarial amide analogues based on the plant serrulatane diterpenoid 3,7,8-trihydroxyserrulat-14-en-19-oic acid. Bioorg Med Chem Lett 2017, 27, 4091.
| Synthesis of antimalarial amide analogues based on the plant serrulatane diterpenoid 3,7,8-trihydroxyserrulat-14-en-19-oic acid.Crossref | GoogleScholarGoogle Scholar |
[67] RA Davis, S Duffy, S Fletcher, VM Avery, RJ Quinn, Thiaplakortones A–D: antimalarial thiazine alkaloids from the Australian marine sponge Plakortis lita. J Org Chem 2013, 78, 9608.
| Thiaplakortones A–D: antimalarial thiazine alkaloids from the Australian marine sponge Plakortis lita.Crossref | GoogleScholarGoogle Scholar |
[68] RH Pouwer, SM Deydier, PV Le, BD Schwartz, NC Franken, RA Davis, MJ Coster, SA Charman, MD Edstein, TS Skinner-Adams, KT Andrews, ID Jenkins, RJ Quinn, Total synthesis of thiaplakortone A: derivatives as metabolically stable leads for the treatment of malaria. ACS Med Chem Lett 2013, 5, 178.
| Total synthesis of thiaplakortone A: derivatives as metabolically stable leads for the treatment of malaria.Crossref | GoogleScholarGoogle Scholar |
[69] BD Schwartz, TS Skinner-Adams, KT Andrews, MJ Coster, MD Edstein, D MacKenzie, SA Charman, M Koltun, S Blundell, A Campbell, RH Pouwer, RJ Quinn, KD Beattie, PC Healy, RA Davis, Synthesis and antimalarial evaluation of amide and urea derivatives based on the thiaplakortone A natural product scaffold. Org Biomol Chem 2015, 13, 1558.
| Synthesis and antimalarial evaluation of amide and urea derivatives based on the thiaplakortone A natural product scaffold.Crossref | GoogleScholarGoogle Scholar |
[70] S Johnson, R Rahmani, DR Drew, MJ Williams, M Wilkinson, YH Tan, JX Huang, CJ Tonkin, JG Beeson, J Baum, BJ Smith, JB Baell, Truncated latrunculins as actin inhibitors targeting Plasmodium falciparum motility and host cell invasion. J Med Chem 2016, 59, 10994.
| Truncated latrunculins as actin inhibitors targeting Plasmodium falciparum motility and host cell invasion.Crossref | GoogleScholarGoogle Scholar |
[71] T Conroy, JT Guo, NH Hunt, RJ Payne, Total synthesis and antimalarial activity of symplostatin 4. Org Lett 2010, 12, 5576.
| Total synthesis and antimalarial activity of symplostatin 4.Crossref | GoogleScholarGoogle Scholar |
[72] T Conroy, JT Guo, RG Linington, NH Hunt, RJ Payne, Total synthesis, stereochemical assignment, and antimalarial activity of gallinamide A. Chemistry 2011, 17, 13544.
| Total synthesis, stereochemical assignment, and antimalarial activity of gallinamide A.Crossref | GoogleScholarGoogle Scholar |
[73] T Conroy, JT Guo, N Elias, KM Cergol, J Gut, J Legac, L Khatoon, Y Liu, S McGowan, PJ Rosenthal, NH Hunt, RJ Payne, Synthesis of gallinamide A analogues as potent falcipain inhibitors and antimalarials. J Med Chem 2014, 57, 10557.
| Synthesis of gallinamide A analogues as potent falcipain inhibitors and antimalarials.Crossref | GoogleScholarGoogle Scholar |
[74] K Ban, S Duffy, Y Khakham, VM Avery, A Hughes, O Montagnat, K Katneni, E Ryan, JB Baell, 3-alkylthio-1,2,4-triazine dimers with potent antimalarial activity. Bioorg Med Chem Lett 2010, 20, 6024.
| 3-alkylthio-1,2,4-triazine dimers with potent antimalarial activity.Crossref | GoogleScholarGoogle Scholar |
[75] KM Katherine, L Lucantoni, M Chavchich, M Abraham, A De Paoli, MR Luth, A-M Zeeman, MJ Delves, FS-R Terán, U Straschil, J Baum, CHM Kocken, SA Ralph, EA Winzeler, VM Avery, MD Edstein, JB Baell, DJ Creek, The novel bis-1,2,4-triazine MIPS-0004373 demonstrates rapid and potent activity against all blood stages of the malaria parasite. Antimicrob Agents Chemother 65, e00311-21.
| The novel bis-1,2,4-triazine MIPS-0004373 demonstrates rapid and potent activity against all blood stages of the malaria parasite.Crossref | GoogleScholarGoogle Scholar |
[76] L Xue, D-H Shi, JR Harjani, F Huang, JG Beveridge, T Dingjan, K Ban, S Diab, S Duffy, L Lucantoni, S Fletcher, FCK Chiu, S Blundell, K Ellis, SA Ralph, G Wirjanata, S Teguh, R Noviyanti, M Chavchich, D Creek, RN Price, J Marfurt, SA Charman, ME Cuellar, JM Strasser, JL Dahlin, MA Walters, MD Edstein, VM Avery, JB Baell, 3,3′-disubstituted 5,5′-Bi(1,2,4-triazine) derivatives with potent in vitro and in vivo antimalarial activity. J Med Chem 2019, 62, 2485.
| 3,3′-disubstituted 5,5′-Bi(1,2,4-triazine) derivatives with potent in vitro and in vivo antimalarial activity.Crossref | GoogleScholarGoogle Scholar |
[77] DL Priebbenow, M Mathiew, D-H Shi, JR Harjani, JG Beveridge, M Chavchich, MD Edstein, S Duffy, VM Avery, RT Jacobs, S Brand, DM Shackleford, W Wang, L Zhong, G Lee, E Tay, H Barker, E Crighton, KL White, SA Charman, A De Paoli, DJ Creek, JB Baell, Discovery of potent and fast-acting antimalarial Bis-1,2,4-triazines. J Med Chem 2021, 64, 4150.
| Discovery of potent and fast-acting antimalarial Bis-1,2,4-triazines.Crossref | GoogleScholarGoogle Scholar |
[78] AE Williamson, PM Ylioja, MN Robertson, Y Antonova-Koch, V Avery, JB Baell, H Batchu, S Batra, JN Burrows, S Bhattacharyya, F Calderon, SA Charman, J Clark, B Crespo, M Dean, SL Debbert, M Delves, ASM Dennis, F Deroose, S Duffy, S Fletcher, G Giaever, I Hallyburton, F-J Gamo, M Gebbia, RK Guy, Z Hungerford, K Kirk, MJ Lafuente-Monasterio, A Lee, S Meister, C Nislow, JP Overington, G Papadatos, L Patiny, J Pham, SA Ralph, A Ruecker, E Ryan, C Southan, K Srivastava, C Swain, MJ Tarnowski, P Thomson, P Turner, IM Wallace, TNC Wells, K White, L White, P Willis, EA Winzeler, S Wittlin, MH Todd, Open source drug discovery: highly potent antimalarial compounds derived from the Tres Cantos arylpyrroles. ACS Cent Sci 2016, 2, 687.
| Open source drug discovery: highly potent antimalarial compounds derived from the Tres Cantos arylpyrroles.Crossref | GoogleScholarGoogle Scholar |
[79] EG Tse, L Aithani, M Anderson, J Cardoso-Silva, G Cincilla, GJ Conduit, M Galushka, D Guan, I Hallyburton, BWJ Irwin, K Kirk, AM Lehane, JCR Lindblom, R Lui, S Matthews, J McCulloch, A Motion, HL Ng, M Öeren, MN Robertson, V Spadavecchio, VA Tatsis, WP van Hoorn, AD Wade, TM Whitehead, P Willis, MH Todd, An open drug discovery competition: experimental validation of predictive models in a series of novel antimalarials. J Med Chem 2021, 64, 16450.
| An open drug discovery competition: experimental validation of predictive models in a series of novel antimalarials.Crossref | GoogleScholarGoogle Scholar |
[80] PR Gilson, W Nguyen, WA Poole, JE Teixeira, JK Thompson, K Guo, RJ Stewart, TD Ashton, KL White, LM Sanz, FJ Gamo, SA Charman, S Wittlin, J Duffy, CJ Tonkin, WH Tham, BS Crabb, BM Cooke, CD Huston, AF Cowman, BE Sleebs, Evaluation of 4-amino 2-anilinoquinazolines against Plasmodium and other apicomplexan parasites in vitro and in a P. falciparum humanized NOD-scid IL2Rγnull mouse model of malaria. Antimicrob Agents Chemother 2019, 63, e01804-18.
| Evaluation of 4-amino 2-anilinoquinazolines against Plasmodium and other apicomplexan parasites in vitro and in a P. falciparum humanized NOD-scid IL2Rγnull mouse model of malaria.Crossref | GoogleScholarGoogle Scholar |
[81] PR Gilson, C Tan, KE Jarman, KN Lowes, JM Curtis, W Nguyen, AE Di Rago, HE Bullen, B Prinz, S Duffy, JB Baell, CA Hutton, H Jousset Subroux, BS Crabb, VM Avery, AF Cowman, BE Sleebs, Optimization of 2-anilino 4-amino substituted quinazolines into potent antimalarial agents with oral in vivo activity. J Med Chem 2017, 60, 1171.
| Optimization of 2-anilino 4-amino substituted quinazolines into potent antimalarial agents with oral in vivo activity.Crossref | GoogleScholarGoogle Scholar |
[82] TD Ashton, A Ngo, P Favuzza, HE Bullen, MR Gancheva, O Romeo, M Parkyn Schneider, N Nguyen, RWJ Steel, S Duffy, KN Lowes, HJ Sabroux, VM Avery, JA Boddey, DW Wilson, AF Cowman, PR Gilson, BE Sleebs, Property activity refinement of 2-anilino 4-amino substituted quinazolines as antimalarials with fast acting asexual parasite activity. Bioorg Chem 2021, 117, 105359.
| Property activity refinement of 2-anilino 4-amino substituted quinazolines as antimalarials with fast acting asexual parasite activity.Crossref | GoogleScholarGoogle Scholar |
[83] W Nguyen, MG Dans, A Ngo, MR Gancheva, O Romeo, S Duffy, TF de Koning-Ward, KN Lowes, HJ Sabroux, VM Avery, DW Wilson, PR Gilson, BE Sleebs, Structure activity refinement of phenylsulfonyl piperazines as antimalarials that block erythrocytic invasion. Eur J Med Chem 2021, 214, 113253.
| Structure activity refinement of phenylsulfonyl piperazines as antimalarials that block erythrocytic invasion.Crossref | GoogleScholarGoogle Scholar |
[84] BL Bailey, W Nguyen, A Ngo, CD Goodman, MR Gancheva, P Favuzza, LM Sanz, FJ Gamo, KN Lowes, GI McFadden, DW Wilson, B Laleu, S Brand, PF Jackson, AF Cowman, BE Sleebs, Optimisation of 2-(N-phenyl carboxamide) triazolopyrimidine antimalarials with moderate to slow acting erythrocytic stage activity. Bioorg Chem 2021, 115, 105244.
| Optimisation of 2-(N-phenyl carboxamide) triazolopyrimidine antimalarials with moderate to slow acting erythrocytic stage activity.Crossref | GoogleScholarGoogle Scholar |
[85] MJ Buskes, KL Harvey, B Prinz, BS Crabb, PR Gilson, DJD Wilson, BM Abbott, Exploration of 3-methylisoquinoline-4-carbonitriles as protein kinase A inhibitors of Plasmodium falciparum. Bioorg Med Chem 2016, 24, 2389.
| Exploration of 3-methylisoquinoline-4-carbonitriles as protein kinase A inhibitors of Plasmodium falciparum.Crossref | GoogleScholarGoogle Scholar |
[86] MJ Buskes, KL Harvey, BJ Richards, R Kalhor, RM Christoff, CK Gardhi, DR Littler, ED Cope, B Prinz, GE Weiss, NJ O’Brien, BS Crabb, LW Deady, PR Gilson, BM Abbott, Antimalarial activity of novel 4-cyano-3-methylisoquinoline inhibitors against Plasmodium falciparum: design, synthesis and biological evaluation. Org Biomol Chem 2016, 14, 4617.
| Antimalarial activity of novel 4-cyano-3-methylisoquinoline inhibitors against Plasmodium falciparum: design, synthesis and biological evaluation.Crossref | GoogleScholarGoogle Scholar |
[87] PR Gilson, R Kumarasingha, J Thompson, X Zhang, JS Penington, R Kalhor, HE Bullen, AM Lehane, MG Dans, TF de Koning-Ward, JK Holien, TP Soares da Costa, MD Hulett, MJ Buskes, BS Crabb, K Kirk, AT Papenfuss, AF Cowman, BM Abbott, A 4-cyano-3-methylisoquinoline inhibitor of Plasmodium falciparum growth targets the sodium efflux pump PfATP4. Sci Rep 2019, 9, 10292.
[88] B Krishnarjuna, SS Lim, SM Devine, CO Debono, R Lam, IR Chandrashekaran, G Jaipuria, H Yagi, HS Atreya, MJ Scanlon, CA MacRaild, PJ Scammells, RS Norton, Solution NMR characterization of apical membrane antigen 1 and small molecule interactions as a basis for designing new antimalarials. J Mol Recognit 2016, 29, 281.
| Solution NMR characterization of apical membrane antigen 1 and small molecule interactions as a basis for designing new antimalarials.Crossref | GoogleScholarGoogle Scholar |
[89] SM Devine, MP Challis, JK Kigotho, G Siddiqui, A De Paoli, CA MacRaild, VM Avery, DJ Creek, RS Norton, PJ Scammells, Discovery and development of 2-aminobenzimidazoles as potent antimalarials. Eur J Med Chem 2021, 221, 113518.
| Discovery and development of 2-aminobenzimidazoles as potent antimalarials.Crossref | GoogleScholarGoogle Scholar |
[90] D Hocková, A Holý, M Masojídková, DT Keough, J de Jersey, LW Guddat, Synthesis of branched 9-[2-(2-phosphonoethoxy)ethyl]purines as a new class of acyclic nucleoside phosphonates which inhibit Plasmodium falciparum hypoxanthine–guanine–xanthine phosphoribosyltransferase. Bioorg Med Chem 2009, 17, 6218.
| Synthesis of branched 9-[2-(2-phosphonoethoxy)ethyl]purines as a new class of acyclic nucleoside phosphonates which inhibit Plasmodium falciparum hypoxanthine–guanine–xanthine phosphoribosyltransferase.Crossref | GoogleScholarGoogle Scholar |
[91] P Špaček, DT Keough, M Chavchich, M Dračínský, Z Janeba, L Naesens, MD Edstein, LW Guddat, D Hocková, J Med Chem 2017, 60, 7539.
| Crossref | GoogleScholarGoogle Scholar |
[92] J Frydrych, DT Keough, M Chavchich, J Travis, M Dračínský, MD Edstein, LW Guddat, D Hocková, Z Janeba, Nucleotide analogues containing a pyrrolidine, piperidine or piperazine ring: synthesis and evaluation of inhibition of plasmodial and human 6-oxopurine phosphoribosyltransferases and in vitro antimalarial activity. Eur J Med Chem 2021, 219, 113416.
| Nucleotide analogues containing a pyrrolidine, piperidine or piperazine ring: synthesis and evaluation of inhibition of plasmodial and human 6-oxopurine phosphoribosyltransferases and in vitro antimalarial activity.Crossref | GoogleScholarGoogle Scholar |
[93] T Klejch, DT Keough, M Chavchich, J Travis, J Skácel, R Pohl, Z Janeba, MD Edstein, VM Avery, LW Guddat, D Hocková, Sulfide, sulfoxide and sulfone bridged acyclic nucleoside phosphonates as inhibitors of the Plasmodium falciparum and human 6-oxopurine phosphoribosyltransferases: Synthesis and evaluation. Eur J Med Chem 2019, 183, 111667.
| Sulfide, sulfoxide and sulfone bridged acyclic nucleoside phosphonates as inhibitors of the Plasmodium falciparum and human 6-oxopurine phosphoribosyltransferases: Synthesis and evaluation.Crossref | GoogleScholarGoogle Scholar |
[94] MM Kaiser, D Hocková, TH Wang, M Dračínský, L Poštová-Slavětínská, E Procházková, MD Edstein, M Chavchich, DT Keough, LW Guddat, Z Janeba, Synthesis and evaluation of novel acyclic nucleoside phosphonates as inhibitors of Plasmodium falciparum and human 6-oxopurine phosphoribosyltransferases. ChemMedChem 2015, 10, 1707.
| Synthesis and evaluation of novel acyclic nucleoside phosphonates as inhibitors of Plasmodium falciparum and human 6-oxopurine phosphoribosyltransferases.Crossref | GoogleScholarGoogle Scholar |
[95] DT Keough, D Rejman, R Pohl, E Zborníková, D Hocková, T Croll, MD Edstein, GW Birrell, M Chavchich, LMJ Naesens, GK Pierens, IM Brereton, LW Guddat, Design of Plasmodium vivax hypoxanthine-guanine phosphoribosyltransferase inhibitors as potential antimalarial therapeutics. ACS Chem Biol 2018, 13, 82.
| Design of Plasmodium vivax hypoxanthine-guanine phosphoribosyltransferase inhibitors as potential antimalarial therapeutics.Crossref | GoogleScholarGoogle Scholar |
[96] TS Skinner-Adams, CM Stack, KR Trenholme, CL Brown, J Grembecka, J Lowther, A Mucha, M Drag, P Kafarski, S McGowan, JC Whisstock, DL Gardiner, JP Dalton, Plasmodium falciparum neutral aminopeptidases: new targets for anti-malarials. Trends Biochem Sci 2010, 35, 53.
| Plasmodium falciparum neutral aminopeptidases: new targets for anti-malarials.Crossref | GoogleScholarGoogle Scholar |
[97] TS Skinner-Adams, J Lowther, F Teuscher, CM Stack, J Grembecka, A Mucha, P Kafarski, KR Trenholme, JP Dalton, DL Gardiner, Identification of phosphinate dipeptide analog inhibitors directed against the Plasmodium falciparum M17 leucine aminopeptidase as lead antimalarial compounds. J Med Chem 2007, 50, 6024.
| Identification of phosphinate dipeptide analog inhibitors directed against the Plasmodium falciparum M17 leucine aminopeptidase as lead antimalarial compounds.Crossref | GoogleScholarGoogle Scholar |
[98] CM Stack, J Lowther, E Cunningham, S Donnelly, DL Gardiner, KR Trenholme, TS Skinner-Adams, F Teuscher, J Grembecka, A Mucha, P Kafarski, L Lua, A Bell, JP Dalton, Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase: a protease involved in amino acid regulation with potential for antimalarial drug development. J Biol Chem 2007, 282, 2069.
| Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase: a protease involved in amino acid regulation with potential for antimalarial drug development.Crossref | GoogleScholarGoogle Scholar |
[99] N Drinkwater, RS Bamert, KK Sivaraman, A Paiardini, S McGowan, X-ray crystal structures of an orally available aminopeptidase inhibitor, Tosedostat, bound to anti-malarial drug targets PfA-M1 and PfA-M17. Proteins 2015, 83, 789.
| X-ray crystal structures of an orally available aminopeptidase inhibitor, Tosedostat, bound to anti-malarial drug targets PfA-M1 and PfA-M17.Crossref | GoogleScholarGoogle Scholar |
[100] S McGowan, CA Oellig, WA Birru, TT Caradoc-Davies, CM Stack, J Lowther, T Skinner-Adams, A Mucha, P Kafarski, J Grembecka, KR Trenholme, AM Buckle, DL Gardiner, JP Dalton, JC Whisstock, Structure of the Plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases. Proc Natl Acad Sci U S A 2010, 107, 2449.
| Structure of the Plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases.Crossref | GoogleScholarGoogle Scholar |
[101] S McGowan, CJ Porter, J Lowther, CM Stack, SJ Golding, TS Skinner-Adams, KR Trenholme, F Teuscher, SM Donnelly, J Grembecka, A Mucha, P Kafarski, R Degori, AM Buckle, DL Gardiner, JC Whisstock, JP Dalton, Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proc Natl Acad Sci U S A 2009, 106, 2537.
| Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase.Crossref | GoogleScholarGoogle Scholar |
[102] K Kannan Sivaraman, A Paiardini, M Sieńczyk, C Ruggeri, CA Oellig, JP Dalton, PJ Scammells, M Drag, S McGowan, Synthesis and structure–activity relationships of phosphonic arginine mimetics as inhibitors of the M1 and M17 aminopeptidases from Plasmodium falciparum. J Med Chem 2013, 56, 5213.
| Synthesis and structure–activity relationships of phosphonic arginine mimetics as inhibitors of the M1 and M17 aminopeptidases from Plasmodium falciparum.Crossref | GoogleScholarGoogle Scholar |
[103] NB Vinh, N Drinkwater, TR Malcolm, M Kassiou, L Lucantoni, PM Grin, GS Butler, S Duffy, CM Overall, VM Avery, PJ Scammells, S McGowan, Hydroxamic acid inhibitors provide cross-species inhibition of Plasmodium M1 and M17 aminopeptidases. J Med Chem 2019, 62, 622.
| Hydroxamic acid inhibitors provide cross-species inhibition of Plasmodium M1 and M17 aminopeptidases.Crossref | GoogleScholarGoogle Scholar |
[104] N Drinkwater, NB Vinh, SN Mistry, RS Bamert, C Ruggeri, JP Holleran, S Loganathan, A Paiardini, SA Charman, AK Powell, VM Avery, S McGowan, PJ Scammells, Potent dual inhibitors of Plasmodium falciparum M1 and M17 aminopeptidases through optimization of S1 pocket interactions. Eur J Med Chem 2016, 110, 43.
| Potent dual inhibitors of Plasmodium falciparum M1 and M17 aminopeptidases through optimization of S1 pocket interactions.Crossref | GoogleScholarGoogle Scholar |
[105] TS Skinner-Adams, GM Fisher, AG Riches, OE Hutt, KE Jarvis, T Wilson, M von Itzstein, P Chopra, Y Antonova-Koch, S Meister, EA Winzeler, M Clarke, DA Fidock, JN Burrows, JH Ryan, KT Andrews, Cyclization-blocked proguanil as a strategy to improve the antimalarial activity of atovaquone. Commun Biol 2019, 2, 166.
| Cyclization-blocked proguanil as a strategy to improve the antimalarial activity of atovaquone.Crossref | GoogleScholarGoogle Scholar |
[106] BL Howard, KL Harvey, RJ Stewart, MF Azevedo, BS Crabb, IG Jennings, PR Sanders, DT Manallack, PE Thompson, CJ Tonkin, PR Gilson, Identification of potent phosphodiesterase inhibitors that demonstrate cyclic nucleotide-dependent functions in apicomplexan parasites. ACS Chem Biol 2015, 10, 1145.
| Identification of potent phosphodiesterase inhibitors that demonstrate cyclic nucleotide-dependent functions in apicomplexan parasites.Crossref | GoogleScholarGoogle Scholar |
[107] C Dogovski, SC Xie, G Burgio, J Bridgford, S Mok, JM McCaw, K Chotivanich, S Kenny, N Gnädig, J Straimer, Z Bozdech, DA Fidock, JA Simpson, AM Dondorp, S Foote, N Klonis, L Tilley, Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance. PLoS Biol 2015, 13, e1002132.
| Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance.Crossref | GoogleScholarGoogle Scholar |
[108] SC Xie, DL Gillett, NJ Spillman, C Tsu, MR Luth, S Ottilie, S Duffy, AE Gould, P Hales, BA Seager, CL Charron, F Bruzzese, X Yang, X Zhao, S-C Huang, CA Hutton, JN Burrows, EA Winzeler, VM Avery, LR Dick, L Tilley, Target validation and identification of novel boronate inhibitors of the Plasmodium falciparum proteasome. J Med Chem 2018, 61, 10053.
| Target validation and identification of novel boronate inhibitors of the Plasmodium falciparum proteasome.Crossref | GoogleScholarGoogle Scholar |
[109] C Xie Stanley, D Metcalfe Riley, H Mizutani, T Puhalovich, E Hanssen, J Morton Craig, Y Du, C Dogovski, S-C Huang, J Ciavarri, P Hales, J Griffin Robert, H Cohen Lawrence, B-C Chuang, S Wittlin, I Deni, T Yeo, E Ward Kurt, C Barry Daniel, B Liu, L Gillett David, F Crespo-Fernandez Benigno, S Ottilie, N Mittal, A Churchyard, D Ferguson, C Aguiar Anna Caroline, VC Guido Rafael, J Baum, K Hanson Kirsten, A Winzeler Elizabeth, F-J Gamo, A Fidock David, D Baud, W Parker Michael, S Brand, R Dick Lawrence, DW Griffin Michael, E Gould Alexandra, L Tilley, Design of proteasome inhibitors with oral efficacy in vivo against Plasmodium falciparum and selectivity over the human proteasome. Proc Natl Acad Sci U S A 2021, 118, e2107213118.
| Design of proteasome inhibitors with oral efficacy in vivo against Plasmodium falciparum and selectivity over the human proteasome.Crossref | GoogleScholarGoogle Scholar |
[110] SC Xie, RD Metcalfe, E Dunn, CJ Morton, SC Huang, T Puhalovich, Y Du, S Wittlin, S Nie, MR Luth, L Ma, MS Kim, CFA Pasaje, K Kumpornsin, C Giannangelo, FJ Houghton, A Churchyard, MT Famodimu, DC Barry, DL Gillett, S Dey, CC Kosasih, W Newman, JC Niles, MCS Lee, J Baum, S Ottilie, EA Winzeler, DJ Creek, N Williamson, MW Parker, S Brand, SP Langston, LR Dick, MDW Griffin, AE Gould, L Tilley, Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy. Science 2022, 376, 1074.
| Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy.Crossref | GoogleScholarGoogle Scholar |
[111] JA Boddey, AN Hodder, S Günther, PR Gilson, H Patsiouras, EA Kapp, JA Pearce, TF de Koning-Ward, RJ Simpson, BS Crabb, AF Cowman, An aspartyl protease directs malaria effector proteins to the host cell. Nature 2010, 463, 627.
| An aspartyl protease directs malaria effector proteins to the host cell.Crossref | GoogleScholarGoogle Scholar |
[112] BE Sleebs, M Gazdik, MT O’Neill, P Rajasekaran, S Lopaticki, K Lackovic, K Lowes, BJ Smith, AF Cowman, JA Boddey, Transition state mimetics of the Plasmodium export element are potent inhibitors of plasmepsin V from P. falciparum and P. vivax. J Med Chem 2014, 57, 7644.
| Transition state mimetics of the Plasmodium export element are potent inhibitors of plasmepsin V from P. falciparum and P. vivax.Crossref | GoogleScholarGoogle Scholar |
[113] BE Sleebs, S Lopaticki, DS Marapana, MT O’Neill, P Rajasekaran, M Gazdik, S Gunther, LW Whitehead, KN Lowes, L Barfod, L Hviid, PJ Shaw, AN Hodder, BJ Smith, AF Cowman, JA Boddey, Inhibition of plasmepsin V activity demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria parasites. PLoS Biol 2014, 12, e1001897.
| Inhibition of plasmepsin V activity demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria parasites.Crossref | GoogleScholarGoogle Scholar |
[114] AN Hodder, BE Sleebs, PE Czabotar, M Gazdik, Y Xu, MT O’Neill, S Lopaticki, T Nebl, T Triglia, BJ Smith, K Lowes, JA Boddey, AF Cowman, Structural basis for plasmepsin V inhibition that blocks export of malaria proteins to human erythrocytes. Nat Struct Mol Biol 2015, 22, 590.
| Structural basis for plasmepsin V inhibition that blocks export of malaria proteins to human erythrocytes.Crossref | GoogleScholarGoogle Scholar |
[115] W Nguyen, AN Hodder, RB de Lezongard, PE Czabotar, KE Jarman, MT O’Neill, JK Thompson, H Jousset Sabroux, AF Cowman, JA Boddey, BE Sleebs, Enhanced antimalarial activity of plasmepsin V inhibitors by modification of the P2 position of PEXEL peptidomimetics. Eur J Med Chem 2018, 154, 182.
| Enhanced antimalarial activity of plasmepsin V inhibitors by modification of the P2 position of PEXEL peptidomimetics.Crossref | GoogleScholarGoogle Scholar |
[116] M Gazdik, KE Jarman, MT O’Neill, AN Hodder, KN Lowes, H Jousset Sabroux, AF Cowman, JA Boddey, BE Sleebs, Exploration of the P3 region of PEXEL peptidomimetics leads to a potent inhibitor of the Plasmodium protease, plasmepsin V. Bioorg Med Chem 2016, 24, 1993.
| Exploration of the P3 region of PEXEL peptidomimetics leads to a potent inhibitor of the Plasmodium protease, plasmepsin V.Crossref | GoogleScholarGoogle Scholar |
[117] M Gazdik, MT O’Neill, S Lopaticki, KN Lowes, BJ Smith, AF Cowman, JA Boddey, BE Sleebs, The effect of N-methylation on transition state mimetic inhibitors of the Plasmodium protease, plasmepsin V. MedChemComm 2015, 6, 437.
| The effect of N-methylation on transition state mimetic inhibitors of the Plasmodium protease, plasmepsin V.Crossref | GoogleScholarGoogle Scholar |
[118] C Jennison, L Lucantoni, MT O’Neill, R McConville, SM Erickson, AF Cowman, BE Sleebs, VM Avery, JA Boddey, Inhibition of plasmepsin V activity blocks Plasmodium falciparum gametocytogenesis and transmission to mosquitoes. Cell Rep 2019, 29, 3796.
| Inhibition of plasmepsin V activity blocks Plasmodium falciparum gametocytogenesis and transmission to mosquitoes.Crossref | GoogleScholarGoogle Scholar |
[119] P Favuzza, M de Lera Ruiz, JK Thompson, T Triglia, A Ngo, RWJ Steel, M Vavrek, J Christensen, J Healer, C Boyce, Z Guo, M Hu, T Khan, N Murgolo, L Zhao, JS Penington, K Reaksudsan, K Jarman, MH Dietrich, L Richardson, KY Guo, S Lopaticki, WH Tham, M Rottmann, T Papenfuss, JA Robbins, JA Boddey, BE Sleebs, HJ Sabroux, JA McCauley, DB Olsen, AF Cowman, Dual plasmepsin-targeting antimalarial agents disrupt multiple stages of the malaria parasite life cycle. Cell Host Microbe 2020, 27, 642.
| Dual plasmepsin-targeting antimalarial agents disrupt multiple stages of the malaria parasite life cycle.Crossref | GoogleScholarGoogle Scholar |
[120] AN Hodder, JJ Christensen, S Scally, T Triglia, A Ngo, RW Birkinshaw, B Bailey, P Favuzza, MH Dietrich, WH Tham, PE Czabotar, K Lowes, K Guo, N Murgolo, ML Ruiz, JA McCauley, BE Sleebs, DB Olsen, AF Cowman, Basis for drug selectivity of plasmepsin IX and X inhibition in Plasmodium falciparum and vivax. Structure 2022, 30, 947.
| Basis for drug selectivity of plasmepsin IX and X inhibition in Plasmodium falciparum and vivax.Crossref | GoogleScholarGoogle Scholar |