Tuning the photoreactivity of photocycloaddition by halochromism†
Vinh X. Truong A B * and Christopher Barner-Kowollik A B C *A Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Qld 4000, Australia.
B School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Qld 4000, Australia.
C Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Handling Editor: Curt Wentrup
Australian Journal of Chemistry 75(11) 899-905 https://doi.org/10.1071/CH22103
Submitted: 12 May 2022 Accepted: 16 June 2022 Published: 25 July 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution 4.0 International License (CC BY)
Abstract
Harnessing the power of light for chemical transformation is a long-standing goal in organic synthesis, materials fabrication and engineering. Amongst all photochemical reactions, [2 + 2] photocycloadditions are inarguably the most important and most frequently used. These photoreactions have green characteristics by enabling new bond formation in a single step procedure under light irradiation, without the need for heat or chemical catalysis. More recently, substantial progress has been made in red-shifting the activation wavelength of photocycloadditions in response to research trends moving towards green and sustainable processes, and advanced applications in biological environments. In the past 5 years, our team has further expanded the toolbox of photocycloaddition reactions that can be triggered by visible light. In our exploration of photochemical reactivity, we found that reactivity is often red-shifted compared to the substrate’s absorption spectrum. Our efforts have resulted in red-shifted photochemical reactions, providing some of the lowest energy – and catalyst-free – photo-activated [2 + 2] cycloadditions (up to 550 nm). More recently, we introduced an additional level of control over such finely wavelength gated reactions by altering the pH of the reaction environment, thus exploiting halochromic effects to enhance or impede the photoreactivity of red-shifted [2 + 2] photocycloaddition reactions. In this account, we discuss the current state of halochromically regulated photochemical reactions and their potential in soft matter materials on selected examples.
Keywords: halochromism, hydrogels, photocrosslinking, photocycloaddition, regioselectivity, single chain nanoparticle, visible light, wavelength-orthogonal.
References
[1] A Albini, M Fagnoni, ChemSusChem 2008, 1, 63.| Crossref | GoogleScholarGoogle Scholar |
[2] G Ciamician, Science 1912, 36, 385.
| Crossref | GoogleScholarGoogle Scholar |
[3] A Albini, V Dichiarante, Photochem Photobiol Sci 2009, 8, 248.
| Crossref | GoogleScholarGoogle Scholar |
[4] S Poplata, A Tröster, Y-Q Zou, T Bach, Chem Rev 2016, 116, 9748.
| Crossref | GoogleScholarGoogle Scholar |
[5] T Junkers, Eur Polym J 2015, 62, 273.
| Crossref | GoogleScholarGoogle Scholar |
[6] BT Tuten, S Wiedbrauk, C Barner-Kowollik, Prog Polym Sci 2020, 100, 101183.
| Crossref | GoogleScholarGoogle Scholar |
[7] M Abdallh, C Yoshikawa, MTW Hearn, GP Simon, K Saito, Macromolecules 2019, 52, 2446.
| Crossref | GoogleScholarGoogle Scholar |
[8] T Hughes, GP Simon, K Saito, Polym Chem 2019, 10, 2134.
| Crossref | GoogleScholarGoogle Scholar |
[9] C-M Chung, Y-S Roh, S-Y Cho, J-G Kim, Chem Mater 2004, 16, 3982.
| Crossref | GoogleScholarGoogle Scholar |
[10] VX Truong, F Li, F Ercole, JS Forsythe, ACS Macro Lett 2018, 7, 464.
| Crossref | GoogleScholarGoogle Scholar |
[11] S Ludwanowski, D Hoenders, K Kalayci, H Frisch, C Barner-Kowollik, A Walther, Chem Commun 2021, 57, 805.
| Crossref | GoogleScholarGoogle Scholar |
[12] TM Almutairi, HH Al-Rasheed, M Monier, FS Alatawi, NH Elsayed, Int J Biol Macromol 2022, 210, 208.
| Crossref | GoogleScholarGoogle Scholar |
[13] R Ou, H Zhang, C Zhao, HM Hegab, L Jiang, VX Truong, H Wang, Chem Mater 2020, 32, 10621.
| Crossref | GoogleScholarGoogle Scholar |
[14] Y-J Zhang, C Chen, L-X Cai, B Tan, X-D Yang, J Zhang, M Ji, Dalton Trans 2017, 46, 7092.
| Crossref | GoogleScholarGoogle Scholar |
[15] R Medishetty, I-H Park, SS Lee, JJ Vittal, Chem Commun 2016, 52, 3989.
| Crossref | GoogleScholarGoogle Scholar |
[16] K Kalayci, H Frisch, C Barner-Kowollik, VX Truong, Adv Funct Mater 2020, 30, 1908171.
| Crossref | GoogleScholarGoogle Scholar |
[17] Y Zhang, PPY Chan, AE Herr, Angew Chem Int Ed 2018, 57, 2357.
| Crossref | GoogleScholarGoogle Scholar |
[18] M Sicignano, RI Rodríguez, J Alemán, Eur J Org Chem 2021, 2021, 3303.
| Crossref | GoogleScholarGoogle Scholar |
[19] VX Truong, C Barner-Kowollik, Trends Chem 2022, 4, 291.
| Crossref | GoogleScholarGoogle Scholar |
[20] K Hiltebrandt, M Kaupp, E Molle, JP Menzel, JP Blinco, C Barner-Kowollik, Chem Commun 2016, 52, 9426.
| Crossref | GoogleScholarGoogle Scholar |
[21] A Shahrokhinia, P Biswas, JF Reuther, J Polym Sci 2021, 59, 1748.
| Crossref | GoogleScholarGoogle Scholar |
[22] VX Truong, K Ehrmann, M Seifermann, PA Levkin, C Barner-Kowollik, Eur J Chem 2022, 28, e202104466.
| Crossref | GoogleScholarGoogle Scholar |
[23] H Frisch, FR Bloesser, C Barner-Kowollik, Angew Chem Int Ed 2019, 58, 3604.
| Crossref | GoogleScholarGoogle Scholar |
[24] J Liu, K Ye, Y Shen, J Peng, J Sun, R Lu, J Mater Chem C 2020, 8, 3165.
| Crossref | GoogleScholarGoogle Scholar |
[25] S Yamada, Y Nojiri, Molecules 2017, 22, 491.
| Crossref | GoogleScholarGoogle Scholar |
[26] J Bai, Z Shi, X Ma, J Yin, X Jiang, Macromol Rapid Commun 2022, 43, 2200055.
| Crossref | GoogleScholarGoogle Scholar |
[27] K Fujimoto, S Sasago, J Mihara, S Nakamura, Org Lett 2018, 20, 2802.
| Crossref | GoogleScholarGoogle Scholar |
[28] FH Quina, DG Whitten, J Am Chem Soc 1977, 99, 877.
| Crossref | GoogleScholarGoogle Scholar |
[29] J-S Wang, K Wu, C Yin, K Li, Y Huang, J Ruan, X Feng, P Hu, C-Y Su, Nat Commun 2020, 11, 4675.
| Crossref | GoogleScholarGoogle Scholar |
[30] H Frisch, JP Menzel, FR Bloesser, DE Marschner, K Mundsinger, C Barner-Kowollik, J Am Chem Soc 2018, 140, 9551.
| Crossref | GoogleScholarGoogle Scholar |
[31] S Wilsey, L González, MA Robb, KN Houk, J Am Chem Soc 2000, 122, 5866.
| Crossref | GoogleScholarGoogle Scholar |
[32] R Farwaha, P de Mayo, YC Toong, J Chem Soc, Chem Commun 1983, 739.
| Crossref | GoogleScholarGoogle Scholar |
[33] J Iriondo-Alberdi, MF Greaney, Eur J Org Chem 2007, 2007, 4801.
| Crossref | GoogleScholarGoogle Scholar |
[34] T Bach, JP Hehn, Angew Chem Int Ed 2011, 50, 1000.
| Crossref | GoogleScholarGoogle Scholar |
[35] N Hoffmann, Chem Rev 2008, 108, 1052.
| Crossref | GoogleScholarGoogle Scholar |
[36] S Yamada, M Kusafuka, M Sugawara, Tetrahedron Lett 2013, 54, 3997.
| Crossref | GoogleScholarGoogle Scholar |
[37] X-H Li, L-Z Wu, L-P Zhang, C-H Tung, Org Lett 2002, 4, 1175.
| Crossref | GoogleScholarGoogle Scholar |
[38] S Yamada, Y Nojiri, M Sugawara, Tetrahedron Lett 2010, 51, 2533.
| Crossref | GoogleScholarGoogle Scholar |
[39] S Yamada, N Uematsu, K Yamashita, J Am Chem Soc 2007, 129, 12100.
| Crossref | GoogleScholarGoogle Scholar |
[40] R Amunugama, MT Rodgers, Int J Mass Spectrom 2003, 227, 1.
| Crossref | GoogleScholarGoogle Scholar |
[41] D Kodura, LL Rodrigues, SL Walden, AS Goldmann, H Frisch, C Barner-Kowollik, J Am Chem Soc 2022, 144, 6343.
| Crossref | GoogleScholarGoogle Scholar |
[42] SC Shim, KT Lee, P-H Bong, J Photochem Photobiol A 1987, 40, 381.
| Crossref | GoogleScholarGoogle Scholar |
[43] MS Kim, KT Lee, BM Jeong, BH Lee, SC Shim, Photochem Photobiol 1991, 54, 517.
| Crossref | GoogleScholarGoogle Scholar |
[44] EN Gulakova, DV Berdnikova, TM Aliyeu, YV Fedorov, IA Godovikov, OA Fedorova, J Org Chem 2014, 79, 5533.
| Crossref | GoogleScholarGoogle Scholar |
[45] TM Aliyeu, DV Berdnikova, OA Fedorova, EN Gulakova, C Stremmel, H Ihmels, J Org Chem 2016, 81, 9075.
| Crossref | GoogleScholarGoogle Scholar |
[46] OA Fedorova, AE Saifutiarova, EN Gulakova, EO Guskova, TM Aliyeu, NE Shepel, YV Fedorov, Photochem Photobiol Sci 2019, 18, 2208.
| Crossref | GoogleScholarGoogle Scholar |
[47] L Liu, L Zhang, T Wang, M Liu, Phys Chem Chem Phys 2013, 15, 6243.
| Crossref | GoogleScholarGoogle Scholar |
[48] M Yin, H Gong, B Zhang, M Liu, Langmuir 2004, 20, 8042.
| Crossref | GoogleScholarGoogle Scholar |
[49] Y Ma, Y Xie, L Lin, L Zhang, M Liu, Y Guo, Z Lan, Z Lu, J Phys Chem C 2017, 121, 23541.
| Crossref | GoogleScholarGoogle Scholar |
[50] Y Ma, L Lin, L Zhang, M Liu, Y Guo, Z Lu, Chin Chem Lett 2017, 28, 1285.
| Crossref | GoogleScholarGoogle Scholar |
[51] K Kalayci, H Frisch, VX Truong, C Barner-Kowollik, Nat Commun 2020, 11, 4193.
| Crossref | GoogleScholarGoogle Scholar |
[52] VX Truong, J Bachmann, A-N Unterreiner, JP Blinco, C Barner-Kowollik, Angew Chem Int Ed 2022, 61, e202113076.
| Crossref | GoogleScholarGoogle Scholar |
[53] Z Shi, P Peng, D Strohecker, Y Liao, J Am Chem Soc 2011, 133, 14699.
| Crossref | GoogleScholarGoogle Scholar |
[54] MA Priestman, L Sun, DS Lawrence, ACS Chem Biol 2011, 6, 377.
| Crossref | GoogleScholarGoogle Scholar |
[55] Y Yamano, K Murayama, H Asanuma, Eur J Chem 2021, 27, 4599.
| Crossref | GoogleScholarGoogle Scholar |
[56] WA Velema, JP van der Berg, W Szymanski, AJM Driessen, BL Feringa, ACS Chem Biol 2014, 9, 1969.
| Crossref | GoogleScholarGoogle Scholar |
[57] X Zhang, Y Lin, RJ Gillies, J Nucl Med 2010, 51, 1167.
| Crossref | GoogleScholarGoogle Scholar |
[58] KB Sutyak, W Lee, PV Zavalij, O Gutierrez, JT Davis, Angew Chem Int Ed 2018, 57, 17146.
| Crossref | GoogleScholarGoogle Scholar |
[59] C Müller, A Bauer, T Bach, Angew Chem Int Ed 2009, 48, 6640.
| Crossref | GoogleScholarGoogle Scholar |
[60] LC Chambers, C Barner-Kowollik, L Barner, L Michalek, H Frisch, ACS Macro Lett 2022, 11, 532.
| Crossref | GoogleScholarGoogle Scholar |