On the concentration dependence of the up-conversion process of Pr3+ doped Li2CaSiO4
Franziska Schröder A * , Stefan Fischer A and Thomas Jüstel AA Department of Chemical Engineering, Münster University of Applied Sciences, Stegerwaldstraße 39, D-48565 Steinfurt, Germany.
Australian Journal of Chemistry 75(9) 760-771 https://doi.org/10.1071/CH21311
Submitted: 30 November 2021 Accepted: 11 March 2022 Published: 7 June 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.
Abstract
This work concerns the concentration dependence of the optical properties of microscale samples according to the solid solution Li2Ca1–2xPrxNaxSiO4 with x = 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.07, and 0.1. Phase purity was inspected by using X-ray powder diffraction. In order to figure out concentration dependent similarities and differences of their properties with respect to down- and up-conversion, luminescence spectroscopy for vacuum UV (VUV), X-ray, and blue light excitation were performed. Furthermore, diffuse reflection spectroscopy as well as time dependent luminescence measurements were conducted. It turns out that the concentration quenching of the up-conversion lags the down-conversion. In addition, a rise time can be observed in the time dependent measurements of the up-conversion. From these observations, it is concluded that the up-conversion process takes place via an energy transfer process with a very high probability.
Keywords: concentration dependence, luminescence, photoluminescence, praseodymium, spectroscopy, up-conversion, UV/VIS spectroscopy, UV-C emission.
References
[1] S Nicolas, M Laroche, S Girard, R Moncorgé, Y Guyot, MF Joubert, E Descorix, AG Petrosyan, J Phys: Condens Matter 1999, 11, 7937.[2] PP Mokoena, IM Nagpure, V Kumar, RE Kroon, EJ Olivier, JH Neethling, HC Swart, OM Ntwaeaborwa, J Phys ChemSolids 2014, 75, 998.
| Crossref | GoogleScholarGoogle Scholar |
[3] S Espinoza, M-F Volhard, H Kätker, H Jenneboer, A Uckelmann, M Haase, M Müller, M Purschke, T Jüstel, Part Part Syst Charact 2018, 35, 1800282.
| Crossref | GoogleScholarGoogle Scholar |
[4] S Okamoto, R Uchino, K Kobayashi, H Yamamoto, J Appl Phys 2009, 106, 013522.
| Crossref | GoogleScholarGoogle Scholar |
[5] Y Choi, Y-J Choi, Water Res 2010, 44, 115.
| Crossref | GoogleScholarGoogle Scholar | 19818988PubMed |
[6] KG Linden, G-A Shin, G Faubert, W Cairns, MD Sobsey, Environ Sci Technol 2002, 36, 2519.
| Crossref | GoogleScholarGoogle Scholar | 12075814PubMed |
[7] RC She, D Chen, P Pak, DK Armani, A Schubert, AM Armani, Biomed Opt Express 2020, 11, 4326.
| Crossref | GoogleScholarGoogle Scholar | 32923046PubMed |
[8] CM Sharpless, KG Linden, Eviron Sci Technol 2001, 35, 2949.
| Crossref | GoogleScholarGoogle Scholar |
[9] N Nwachuku, CP Gerba, A Oswald, FD Mashadi, Appl Environ Microbiol 2005, 71, 5633.
| Crossref | GoogleScholarGoogle Scholar | 16151167PubMed |
[10] AC Eischeid, JN Meyer, KG Linden, Appl Environ Microbiol 2009, 75, 23.
| Crossref | GoogleScholarGoogle Scholar | 18978087PubMed |
[11] S Preuss, A Demchuk, M Stuke, Appl Phys A 1995, 61, 33.
| Crossref | GoogleScholarGoogle Scholar |
[12] V Panov, T Borisova-Papancheva, J Medical Dental Practice 2015, 2, 194.
| Crossref | GoogleScholarGoogle Scholar |
[13] P Chandra, LL Wolfenden, TR Ziegler, J Tian, M Luo, AA Stecenko, TC Chen, MF Holick, V Tangpricha, Photodermatol Photoimmunol Photomed 2007, 23, 179.
| Crossref | GoogleScholarGoogle Scholar |
[14] Y Xu, L Chen, Y Li, G Song, Y Wang, W Zhuang, Z Long, Appl Phys Lett 2008, 92, 021129.
| Crossref | GoogleScholarGoogle Scholar |
[15] F Wang, X Liu, Chem Soc Rev 2009, 38, 976.
| Crossref | GoogleScholarGoogle Scholar | 19421576PubMed |
[16] M Elman, J Lebzelter, Dermatol Surg 2004, 30, 139.
| Crossref | GoogleScholarGoogle Scholar | 14756640PubMed |
[17] P Pues, M Laube, S Fischer, F Schröder, S Schwung, D Rytz, T Fiehler, U Wittrock, T Jüstel, J Lumin 2021, 234, 117987.
| Crossref | GoogleScholarGoogle Scholar |
[18] Z Yin, P Yuan, Z Zhu, T Li, Y Yang, Ceramic Int 2021, 47, 4858.
| Crossref | GoogleScholarGoogle Scholar |
[19] C Hu, C Sun, J Li, Z Li, H Zhang, Z Jiang, Chem Phys 2006, 235, 563.
| Crossref | GoogleScholarGoogle Scholar |
[20] R Scheps, Prog Quantum Electron 1996, 20, 271.
| Crossref | GoogleScholarGoogle Scholar |
[21] F Song, G Zhang, M Shang, H Tan, J Yang, F Meng, Appl. Phys Lett 2001, 79, 1748.
| Crossref | GoogleScholarGoogle Scholar |
[22] GY Chen, Y Liu, ZG Zhang, B Aghahadi, G Somesfalean, Q Sun, FP Wang, Chem Phys Lett 2007, 448, 127.
| Crossref | GoogleScholarGoogle Scholar |
[23] F Auzel, Chem Rev 2004, 104, 139.
| Crossref | GoogleScholarGoogle Scholar | 14719973PubMed |
[24] J Zhou, W Zhang, T Huang, L Wang, J Li, W Liu, B Jiang, Y Pan, J Guo, Ceramics Int 2011, 37, 513.
| Crossref | GoogleScholarGoogle Scholar |
[25] Y Zorenko, V Gorbenko, T Zorenko, K Paprocki, A Osvet, M Batentschuk, C Brabec, A Fedorov, J Lumin 2016, 169, B, 816.
| Crossref | GoogleScholarGoogle Scholar |
[26] M Pokhrel, GA Kumar, P Samuel, KI Ueda, T Yanagitani, H Yagi, DK Sardar, Opt Mater Express 2011, 1, 1272.
| Crossref | GoogleScholarGoogle Scholar |
[27] W Ahn, YJ Kim, Opt Mater Express 2016, 6, 1099.
| Crossref | GoogleScholarGoogle Scholar |
[28] DN Patel, BR Reddy, SK Nash-Stevenson, Opt Mater 1998, 10, 225.
| Crossref | GoogleScholarGoogle Scholar |
[29] F Schröder, S Fischer, T Jüstel, J Lumin 2021, 235, 118046.
| Crossref | GoogleScholarGoogle Scholar |
[30] JA Gard, AR West, J Solid State Chem 1973, 7, 422.
| Crossref | GoogleScholarGoogle Scholar |
[31] W Zachariasen, Zeitschrift fuer Phys Chemie 1926, 123U, 134.
| Crossref | GoogleScholarGoogle Scholar |
[32] F Maddalena, L Tjahjana, A Xie, Arramel, S Zeng, H Wang, P Coquet, W Drozdowski, C Dujardin, C Dang, MD Birowosuto, Crystals 2019, 9, 88.
| Crossref | GoogleScholarGoogle Scholar |
[33] Blasse G, Grabmaier BC. Luminescent Materials. Springer: Berlin, Heidelberg. 1994.
| Crossref |
[34] R Piramidowicz, K Ławniczuk, M Nakielska, J Sarnecki, M Malinowski, J Lumin 2008, 128, 708.
| Crossref | GoogleScholarGoogle Scholar |
[35] Y Jin, Y Hu, R Chen, Y Fu, G Ju, Z Mu, J Lin, Z Wang, F Xue, Q Zhang, J Alloys Compd 2015, 623, 255.
| Crossref | GoogleScholarGoogle Scholar |
[36] DL Dexter, JH Schulman, J Chem Phys 1954, 22, 1063.
| Crossref | GoogleScholarGoogle Scholar |
[37] NV Alov, Inorg Mater 2011, 47, 1487.
| Crossref | GoogleScholarGoogle Scholar |
[38] M Malinowski, MF Joubert, B Jacquier, Phys Rev B 1994, 50, 12367.
| Crossref | GoogleScholarGoogle Scholar |
[39] H Xu, Z Jiang, Phys Rev B 2002, 66, 035103.
| Crossref | GoogleScholarGoogle Scholar |
[40] T Riedener, P Egger, J Hulliger, HU Güdel, Phys Rev B 1997, 56, 1800.
| Crossref | GoogleScholarGoogle Scholar |
[41] WW Piper, JA DeLuca, FS Ham, J Lumin 1974, 8, 344.
| Crossref | GoogleScholarGoogle Scholar |