Synthesis, crystal structure and characterisation of the complex {Ln(DHTA)1.5(H2O)3]·H2O}n (Ln = La, Ce, Nd)
Jia-Qi Li A , He Wang B C , Chun Li A D , Fan-Ming Zeng A D , Chuan-Bi Li B C and Zhongmin Su A D *A School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China.
B Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, China.
C Department of Chemistry, Jilin Normal University, Siping 136000, PR China.
D Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, China.
Australian Journal of Chemistry 75(3) 231-239 https://doi.org/10.1071/CH21256
Submitted: 3 October 2021 Accepted: 9 December 2021 Published: 3 March 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.
Abstract
By introducing different metal ions, we present three new coordination polymers {[Ln(DHTA)1.5(H2O)3]·H2O}n (Ln = La 1, Ce 2, Nd 3, H2DHTA = 2,5-dihydroxyterephthalic acid) by using a hydrothermal technique. Structural analysis revealed that 1–3 are isostructural, displaying a one-dimensional structure along the a axis and a two-dimensional network along the b axis, which was stabilised by O–H⋯O intermolecular hydrogen bonding and π–π stacking interactions. The photoluminescent data of the three complexes have been studied in detail. Moreover, C and H elemental analysis, infrared (IR) spectroscopy in the range of 4000–400 cm−1, powder X-ray diffraction and thermogravimetric analysis (TG) of the three complexes have also been described.
Keywords: 2,5‐dihydroxyterephthalic acid, coordination polymer, crystal structure, fluorescent property, hydrothermal technique, LnIII complex, thermogravimetric analysis.
References
[1] MH Xie, XL Yang, CD Wu, Chem Eur J 2011, 17, 11424.| Crossref | GoogleScholarGoogle Scholar | 21905132PubMed |
[2] S Kumar, BD Gupta, Inorg Chem 2011, 50, 9207.
| Crossref | GoogleScholarGoogle Scholar | 21902190PubMed |
[3] PCA Bruijnincx, ILC Buurmans, YX Huang, G Juhász, M Viciano-Chumillas, M Quesada, J Reedijk, M Lutz, AL Spek, E Münck, EL Bominaar, RJMK Gebbink, Inorg Chem 2011, 50, 9243.
| Crossref | GoogleScholarGoogle Scholar |
[4] JJ Yu, XM Li, B Liu, S Zhou, Chin J Struct Chem 2020, 39, 765.
[5] LP Xue, ZH Li, T Zhang, JJ Cui, Y Gao, JX Yao, New J Chem 2018, 42, 14203.
| Crossref | GoogleScholarGoogle Scholar |
[6] D Liu, FF Lang, X Zhou, ZG Ren, DJ Young, JP Lang, Inorg Chem 2017, 56, 12542.
| Crossref | GoogleScholarGoogle Scholar | 28967747PubMed |
[7] GZ Liu, SH Li, XL Li, LY Xin, LY Wang, CrystEngComm 2013, 15, 4571.
| Crossref | GoogleScholarGoogle Scholar |
[8] GL Li, GZ Liu, LF Ma, LY Xin, XL Li, LY Wang, Chem Commun 2014, 50, 2615.
| Crossref | GoogleScholarGoogle Scholar |
[9] YF Wang, Z Li, YC Sun, JS Zhao, SC Zhang, Inorg Chem Commun 2015, 44, 25.
| Crossref | GoogleScholarGoogle Scholar |
[10] RG Pearson, J Am Chem Soc 1963, 85, 3533.
| Crossref | GoogleScholarGoogle Scholar |
[11] XH Yan, YF Li, Q Wang, XG Huang, Y Zhang, CJ Gao, WS Liu, Y Tang, HR Zhang, YL Shao, Cryst Growth Des 2011, 11, 4205.
| Crossref | GoogleScholarGoogle Scholar |
[12] GL Zhuang, XJ Kong, LS Long, RB Huang, LS Zheng, CrystEngComm 2010, 12, 2691.
| Crossref | GoogleScholarGoogle Scholar |
[13] DB Dang, Y Bai, C He, J Wang, CY Duan, JY Niu, Inorg Chem 2010, 49, 1280.
| Crossref | GoogleScholarGoogle Scholar |
[14] SR Zheng, SL Cai, QY Yang, TT Xiao, J Fan, WG Zhang, Inorg Chem Commun 2011, 14, 826.
| Crossref | GoogleScholarGoogle Scholar |
[15] S Freslon, Y Luo, C Daiguebonne, G Calvez, K Bernot, O Guillou, Inorg Chem 2016, 55, 794.
| Crossref | GoogleScholarGoogle Scholar | 26714204PubMed |
[16] J Wang, C Daiguebonne, Y Suffren, T Roisnel, S Freslon, G Calvez, K Bernot, O Guillou, Inorg Chim Acta 2019, 488, 208.
| Crossref | GoogleScholarGoogle Scholar |
[17] WQ Zhu, J Wang, R Zhao, RL Gan, J Synth Cryst 2015, 44, 1421.
[18] XY Gu, RQ Cui, W Lv, Y Yang, SX She, J Fun Mater 2019, 50, 3101.
[19] SA Sahadevan, N Monni, M Oggianu, A Abhervé, D Marongiu, M Saba, A Mura, G Bongiovanni, V Mameli, C Cannas, N Avarvari, F Quochi, ML Mercuri, ACS Appl Nano Mater 2020, 3, 94.
| Crossref | GoogleScholarGoogle Scholar |
[20] ZP Wang, B Hu, XH Qi, NN Shen, XY Huang, Dalton Trans 2016, 45, 8745.
| Crossref | GoogleScholarGoogle Scholar | 27110830PubMed |
[21] SL Anderson, A Gładysiak, PG Boyd, CP Ireland, P Miéville, D Tiana, B Vlaisavljevich, P Schouwink, W van Beek, KJ Gagnon, B Smita, KC Stylianoua, CrystEngComm 2017, 19, 3407.
| Crossref | GoogleScholarGoogle Scholar |
[22] A Gładysiak, SM Moosavi, L Sarkisov, B Smita, KC Stylianou, CrystEngComm 2019, 21, 5292.
| Crossref | GoogleScholarGoogle Scholar |
[23] XL Chen, YJ Shen, C Gao, J Yang, X Sun, X Zhang, YD Yang, GP Wei, JF Xiang, JL Sessler, HY Gong, J Am Chem Soc 2020, 142, 7443.
| Crossref | GoogleScholarGoogle Scholar | 32216311PubMed |
[24] JD Bellis, L Bellucci, G Bottaro, L Labella, F Marchetti, S Samaritani, DB Dell’Amico, L Armelao, Dalton Trans 2020, 49, 6030.
| Crossref | GoogleScholarGoogle Scholar |
[25] S Hussain, XN Chen, WTA Harrison, S Ahmad, S Sharif, J Su, S Muhammad, SJ Li, RSC Adv 2020, 10, 12841.
| Crossref | GoogleScholarGoogle Scholar |
[26] DY Ma, Z Li, JX Zhu, YP Zhou, LL Chen, XF Mai, ML Liufu, YB Wu, YW Li, J Mater Chem A 2020, 8, 11933.
| Crossref | GoogleScholarGoogle Scholar |
[27] JD Bellis, DB Dell’Amico, G Ciancaleoni, L Labella, F Marchetti, S Samaritani, Inorg Chim Acta 2019, 495, 118937.
| Crossref | GoogleScholarGoogle Scholar |
[28] A García-Valdivia, A Zabala-Lekuona, A Goñi-Cárdenas, B Fernández, JA García, JF Quílez del Moral, J Cepeda, A Rodríguez-Diéguez, Inorg Chim Acta 2020, 509, 51.
| Crossref | GoogleScholarGoogle Scholar |
[29] SX She, XY Gu, Y Yang, Inorg Chem Commun 2019, 110, 107584.
| Crossref | GoogleScholarGoogle Scholar |
[30] FL Liang, L Qin, JR Xu, SM Li, CM Luo, H Huang, DY Ma, Z Li, J Xu, J Solid State Chem 2020, 289, 121544.
| Crossref | GoogleScholarGoogle Scholar |
[31] Sheldrick GM. SHELXS-97, Programs for X-ray Crystal Structure Solution. Göttingen, Germany: University of Göttingen; 1997.
[32] Sheldrick GM. SHELXL-2018/1, Programs for X-ray Crystal Structure Refinement. Göttingen, Germany: University of Göttingen; 2018.
[33] YL Wang, YL Jiang, ZJ Xiahou, JH Fu, QY Liu, Dalton Trans 2012, 41, 11428.
| Crossref | GoogleScholarGoogle Scholar | 22892796PubMed |
[34] M Devereux, DO Shea, A Kellett, M McCann, M Walsh, D Egan, C Deegan, K Kędziora, G Rosair, H Müller-Bunz, Inorg Biochem 2007, 101, 881.
| Crossref | GoogleScholarGoogle Scholar |
[35] Farrugia LJ, Wing XA. Windows Program for Crystal Structure Analysis. Glasgow, UK: University of Glasgow; 1988.
[36] Bellamy LJ. The Infrared Spectra of Complex Molecules. New York: Wiley; 1958.
[37] Shi YZ, Sun XZ, Jiang YH. Spectra and Chemical Identifification of Organic Compounds. Nanjing: Science and Technology Press; 1988. p. 98.
[38] CJ Xu, F Xie, XZ Guo, H Yang, Spectrochim Acta, Part A 2005, 61, 2005.
| Crossref | GoogleScholarGoogle Scholar |
[39] RF Wang, LP Jin, MZ Wang, SH Huang, XT Chen, Acta Chim Sin 1995, 53, 39.
| Crossref | GoogleScholarGoogle Scholar |
[40] Gilbert A, Baggott J. Essentials of Molecular Photochemistry. Boca Raton: CRC Press; 1991.
[41] ZB Han, YK He, CH Ge, J Ribas, L Xu, Dalton Trans 2007, 46, 3020.
| Crossref | GoogleScholarGoogle Scholar |
[42] J Yang, Q Yue, GD Li, JJ Cao, GH Li, JS Chen, Inorg Chem 2006, 45, 2857.
| Crossref | GoogleScholarGoogle Scholar | 16562941PubMed |
[43] SS Chen, Y Zhao, J Fan, T Okamura, ZS Bai, ZH Chen, WY Sun, CrystEngComm 2012, 14, 3564.
| Crossref | GoogleScholarGoogle Scholar |
[44] XJ Zheng, LP Jin, S Gao, SZ Lu, New J Chem 2005, 29, 798.
| Crossref | GoogleScholarGoogle Scholar |
[45] LH Fu, XM Li, B Liu, S Zhou, Chin J Struct Chem 2019, 38, 1549.
[46] SQ Zang, Y Su, YZ Li, ZP Ni, QJ Meng, Inorg Chem 2006, 45, 174.
| Crossref | GoogleScholarGoogle Scholar |