Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

A one-pot synthesis of oligo(arylene–ethynylene)-molecular wires and their use in the further verification of molecular circuit laws

Masnun Naher A , Elena Gorenskaia A , Stephen A. Moggach A , Thomas Becker B , Richard J. Nichols C , Colin J. Lambert D and Paul J. Low https://orcid.org/0000-0003-1136-2296 A *
+ Author Affiliations
- Author Affiliations

A School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

B School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.

C Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.

D Department of Physics, Lancaster University, Lancaster LA1 4YB, UK.

* Correspondence to: paul.low@uwa.edu.au

Handling Editor: George Koutsantonis

Australian Journal of Chemistry 75(9) 506-522 https://doi.org/10.1071/CH21235
Submitted: 15 September 2021  Accepted: 19 November 2021   Published: 23 February 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

A convenient two-step, one-pot synthesis of oligo(arylene–ethynylene) (OAE) type molecular wires in yields of up to 70% via in situ desilylation of protected bis(alkynes) Me3SiC≡CArC≡CSiMe3 (Ar = 2,5-thienyl, 1,4-naphthylene, 9,10-anthrylene) and subsequent Sonogashira cross-coupling with S-(4-iodophenyl) ethanethiolate, 4-iodothioanisole, or 5-bromo-3,3-dimethyl-2,3-dihydrobenzo[b]thiophene is described. The in situ desilylation avoids the manipulation of the sensitive terminal dialkynes (HC≡CArC≡CH), whilst the general approach presented has some advantages over alternative synthetic strategies based on coupling of aryl dihalides (XArX) by avoiding the multi-step preparation and purification of the terminal alkynes S-(4-ethynylphenyl) ethanethiolate, 4-ethynylthioanisole and 5-ethynyl 3,3-dimethyl-2,3-dihydrobenzo[b]thiophene. The molecular conductance of the resulting thiolate or thioether functionalised OAE molecular wires has been determined using scanning tunneling microscope break junction (STM-BJ) methods. The trends in molecular conductance do not track simply with the degree of aromaticity of the molecular core despite the rather similar molecular lengths. Rather, the STM-BJ data are better correlated with the nature of the anchor group, highlighting the important role of electrode–molecule coupling on electron transport in a molecular junction. The experimental conductance data are in good agreement with recently described quantum circuit rules, further highlighting the potential for these relationships to be used as predictive tools in molecular electronics research.

Keywords: molecular electronics, molecule‐electrode coupling, molecular junction, molecular wire, oligo(phenylene–ethynylene), single‐molecule conductance, Sonogashira coupling, STM‐break junction.


References

[1]  S Marques-Gonzalez, PJ Low, Aust J Chem 2016, 69, 244.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  SV Aradhya, L Venkataraman, Nat Nanotechnol 2013, 8, 399.
         | Crossref | GoogleScholarGoogle Scholar | 23736215PubMed |

[3]  K Wang, BQ Xu, Top Curr Chem 2017, 375, 17.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  Y Komoto, S Fujii, M Iwane, M Kiguchi, J Mater Chem C 2016, 4, 8842.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  JC Lacroix, Curr Opin Electrochem 2018, 7, 153.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A Vilan, D Aswal, D Cahen, Chem Rev 2017, 117, 4248.
         | Crossref | GoogleScholarGoogle Scholar | 28177226PubMed |

[7]  E Gorenskaia, KL Turner, S Martin, P Cea, PJ Low, Nanoscale 2021, 13, 9055.
         | Crossref | GoogleScholarGoogle Scholar | 34042128PubMed |

[8]  L Herrer, S Martin, P Cea, Appl Sci 2020, 10, 6064.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  G Puebla-Hellmann, K Venkatesan, M Mayor, E Lortscher, Nature 2018, 559, 232.
         | Crossref | GoogleScholarGoogle Scholar | 29995866PubMed |

[10]  SK Saxena, UM Tefashe, M Supur, RL McCreery, ACS Sensors 2021, 6, 513.
         | Crossref | GoogleScholarGoogle Scholar | 33315386PubMed |

[11]  AJ Bergren, L Zeer-Wanklyn, M Semple, N Pekas, B Szeto, RL McCreery, J Phys Condens Mat 2016, 28, 094011.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  D Xiang, XL Wang, CC Jia, T Lee, XF Guo, Chem Rev 2016, 116, 4318.
         | Crossref | GoogleScholarGoogle Scholar | 26979510PubMed |

[13]  Lambert CJ. Quantum transport in nanostructures and molecules. In: An introduction to molecular electronics [Online]. IOP Publishing; 2021.
| Crossref |

[14]  CJ Lambert, Chem Soc Rev 2015, 44, 875.
         | Crossref | GoogleScholarGoogle Scholar | 25255961PubMed |

[15]  J Ferrer, CJ Lambert, VM Garcia-Suarez, DZ Manrique, D Visontai, L Oroszlany, R Rodriguez-Ferradas, I Grace, SWD Bailey, K Gillemot, H Sadeghi, LA Algharagholy, New J Phys 2014, 16, 093029.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  M Naher, DC Milan, OA Al-Owaedi, IJ Planje, S Bock, J Hurtado-Gallego, P Bastante, ZM Abd Dawood, L Rincon-Garcia, G Rubio-Bollinger, SJ Higgins, N Agrait, CJ Lambert, RJ Nichols, PJ Low, J Am Chem Soc 2021, 143, 3817.
         | Crossref | GoogleScholarGoogle Scholar | 33606524PubMed |

[17]  A Aggarwal, V Kaliginedi, PK Maiti, Nano Lett 2021, 21, 8532.
         | Crossref | GoogleScholarGoogle Scholar | 34622657PubMed |

[18]  DZ Manrique, Q Al-Galiby, WJ Hong, CJ Lambert, Nano Lett 2016, 16, 1308.
         | Crossref | GoogleScholarGoogle Scholar | 26784577PubMed |

[19]  E Gorenskaia, M Naher, L Daukiya, SA Moggach, DC Milan, A Vezzoli, CJ Lambert, RJ Nichols, T Becker, PJ Low, Aust J Chem 2021, 74, 806.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  N Xin, JX Guan, CG Zhou, XJN Chen, CH Gu, Y Li, MA Ratner, A Nitzan, JF Stoddart, XF Guo, Nat Rev Phys 2019, 1, 211.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  I Kaur, XT Zhao, MR Bryce, PA Schauer, PJ Low, R Kataky, ChemPhysChem 2013, 14, 431.
         | Crossref | GoogleScholarGoogle Scholar | 23316022PubMed |

[22]  H Hakkinen, Nat Chem 2012, 4, 443.
         | Crossref | GoogleScholarGoogle Scholar | 22614378PubMed |

[23]  YH Jang, WA Goddard, J Phys Chem C 2010, 114, 4646.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  T Park, H Kang, S Seong, S Han, YJ Son, E Ito, T Hayashi, M Hara, J Noh, J Phys Chem C 2019, 123, 9096.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  MH Schoenfisch, JE Pemberton, J Am Chem Soc 1998, 120, 4502.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  JM Tour, AM Rawlett, M Kozaki, YX Yao, RC Jagessar, SM Dirk, DW Price, MA Reed, CW Zhou, J Chen, WY Wang, I Campbell, Chem Eur J 2001, 7, 5118.
         | Crossref | GoogleScholarGoogle Scholar | 11775685PubMed |

[27]  LA Bumm, JJ Arnold, MT Cygan, TD Dunbar, TP Burgin, L Jones, DL Allara, JM Tour, PS Weiss, Science 1996, 271, 1705.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  R Frisenda, D Stefani, HSJ van der Zant, Acc Chem Res 2018, 51, 1359.
         | Crossref | GoogleScholarGoogle Scholar | 29862817PubMed |

[29]  LJ O’Driscoll, MR Bryce, Nanoscale 2021, 13, 10668.
         | Crossref | GoogleScholarGoogle Scholar | 34110337PubMed |

[30]  XT Zhao, CC Huang, M Gulcur, AS Batsanov, M Baghernejad, WJ Hong, MR Bryce, T Wandlowski, Chem Mater 2013, 25, 4340.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  CS Wang, AS Batsanov, MR Bryce, J Org Chem 2006, 71, 108.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  Q Lu, K Liu, HM Zhang, ZB Du, XH Wang, FS Wang, ACS Nano 2009, 3, 3861.
         | Crossref | GoogleScholarGoogle Scholar | 19916506PubMed |

[33]  R Kitouni, P Selvanathan, O Galangau, L Norel, B Ouarda, S Rigaut, Synth Commun 2018, 48, 1052.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  V Kaliginedi, P Moreno-Garcia, H Valkenier, WJ Hong, VM Garcia-Suarez, P Buiter, JLH Otten, JC Hummelen, CJ Lambert, T Wandlowski, J Am Chem Soc 2012, 134, 5262.
         | Crossref | GoogleScholarGoogle Scholar | 22352944PubMed |

[35]  H Valkenier, EH Huisman, PA van Hal, DM de Leeuw, RC Chiechi, JC Hummelen, J Am Chem Soc 2011, 133, 4930.
         | Crossref | GoogleScholarGoogle Scholar | 21384876PubMed |

[36]  XT Wang, TLR Bennett, A Ismael, LA Wilkinson, J Hamill, AJP White, IM Grace, OV Kolosov, T Albrecht, BJ Robinson, NJ Long, LF Cohen, CJ Lambert, J Am Chem Soc 2020, 142, 8555.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  A Yamada, QG Feng, Q Zhou, A Hoskins, KM Lewis, BD Dunietz, J Phys Chem C 2017, 121, 10298.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  R Chinchilla, C Najera, Chem Rev 2007, 107, 874.
         | Crossref | GoogleScholarGoogle Scholar | 17305399PubMed |

[39]  R Chinchilla, C Najera, Chem Soc Rev 2011, 40, 5084.
         | Crossref | GoogleScholarGoogle Scholar | 21655588PubMed |

[40]  MM Huq, MR Rahman, M Naher, MMR Khan, MK Masud, GMG Hossain, NY Zhu, YH Lo, M Younus, WY Wong, J Inorg, Organomet Polym 2016, 26, 1243.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  ZF Shi, LJ Wang, H Wang, XP Cao, HL Zhang, Org Lett 2007, 9, 595.
         | Crossref | GoogleScholarGoogle Scholar | 17253702PubMed |

[42]  P Moreno-Garcia, M Gulcur, DZ Manrique, T Pope, WJ Hong, V Kaliginedi, CC Huang, AS Batsanov, MR Bryce, C Lambert, T Wandlowski, J Am Chem Soc 2013, 135, 12228.
         | Crossref | GoogleScholarGoogle Scholar | 23875671PubMed |

[43]  N Weibel, A Blaszczyk, C von Haenisch, M Mayor, I Pobelov, T Wandlowski, F Chen, NJ Tao, Eur J Org Chem 2008, 136.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  CR Parker, E Leary, R Frisenda, ZM Wei, KS Jennum, E Glibstrup, PB Abrahamsen, M Santella, MA Christensen, EA Della Pia, T Li, MT Gonzalez, XB Jiang, TJ Morsing, G Rubio-Bollinger, BW Laursen, K Norgaard, H van der Zant, N Agrait, MB Nielsen, J Am Chem Soc 2014, 136, 16497.
         | Crossref | GoogleScholarGoogle Scholar | 25375316PubMed |

[45]  K Liu, XH Wang, FS Wang, ACS Nano 2008, 2, 2315.
         | Crossref | GoogleScholarGoogle Scholar | 19206398PubMed |

[46]  MS Inkpen, AJP White, T Albrecht, NJ Long, Chem Commun 2013, 49, 5663.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  F Jiang, DI Trupp, N Algethami, HN Zheng, WX He, A Alqorashi, CX Zhu, C Tang, RH Li, JY Liu, H Sadeghi, J Shi, R Davidson, M Korb, AN Sobolev, M Naher, S Sangtarash, PJ Low, WJ Hong, CJ Lambert, Angew Chem Int Ed 2019, 58, 18987.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  A Seidler, J Svoboda, V Dekoj, JV Chocholousova, J Vacek, IG Stara, I Stary, Tetrahedron Lett 2013, 54, 2795.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  SM Wu, MT Gonzalez, R Huber, S Grunder, M Mayor, C Schonenberger, M Calame, Nat Nanotechnol 2008, 3, 569.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  A Operamolla, A Punzi, GM Farinola, Asian J Org Chem 2017, 6, 120.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  M Gantenbein, XH Li, S Sangtarash, J Bai, G Olsen, A Alqorashi, WJ Hong, CJ Lambert, MR Bryce, Nanoscale 2019, 11, 20659.
         | Crossref | GoogleScholarGoogle Scholar | 31641715PubMed |

[52]  N Tanifuji, M Irie, K Matsuda, J Am Chem Soc 2005, 127, 13344.
         | Crossref | GoogleScholarGoogle Scholar | 16173768PubMed |

[53]  W Fudickar, T Linker, J Am Chem Soc 2012, 134, 15071.
         | Crossref | GoogleScholarGoogle Scholar | 22881365PubMed |

[54]  S Fraysse, C Coudret, JP Launay, J Am Chem Soc 2003, 125, 5880.
         | Crossref | GoogleScholarGoogle Scholar | 12733929PubMed |

[55]  TX Neenan, GM Whitesides, J Org Chem 1988, 53, 2489.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  K Danel, JT Lin, Arkivoc 2002, 1, 12.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  MA Fabre, J Jaud, JJ Bonvoisin, Inorg Chim Acta 2005, 358, 2384.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  S Fraysse, C Coudret, JP Launay, Tetrahedron Lett 1998, 39, 7873.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  A Slodek, M Filapek, E Schab-Balcerzak, M Grucela, S Kotowicz, H Janeczek, K Smolarek, S Mackowski, JG Malecki, A Jedrzejowska, G Szafraniec-Gorol, A Chrobok, B Marcol, S Krompiec, M Matussek, J Org Chem 2016, 2016, 4020.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  D Lasanyi, A Meszaros, Z Novak, GL Tolnai, J Org Chem 2018, 83, 8281.
         | Crossref | GoogleScholarGoogle Scholar | 29842774PubMed |

[61]  AM DiLauro, WJ Seo, ST Phillips, J Org Chem 2011, 76, 7352.
         | Crossref | GoogleScholarGoogle Scholar | 21846123PubMed |

[62]  ZL Zhou, LH Zhao, S Zhang, K Vincent, S Lam, D Henze, Synth Commun 2012, 42, 1622.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  JS Capani, JE Cochran, J Liang, J Org Chem 2019, 84, 9378.
         | Crossref | GoogleScholarGoogle Scholar | 31194913PubMed |

[64]  U Halbes, P Pale, Tetrahedron Lett 2002, 43, 2039.
         | Crossref | GoogleScholarGoogle Scholar |

[65]  Y Kaburagi, Y Kishi, Org Lett 2007, 9, 723.
         | Crossref | GoogleScholarGoogle Scholar | 17286380PubMed |

[66]  M Naher, S Bock, ZM Langtry, KM O’Malley, AN Sobolev, BW Skelton, M Korb, PJ Low, Organometallics 2020, 39, 4667.
         | Crossref | GoogleScholarGoogle Scholar |

[67]  D Miguel, LA de Cienfuegos, A Martin-Lasanta, SP Morcillo, LA Zotti, E Leary, M Burkle, Y Asai, R Jurado, DJ Cardenas, G Rubio-Bollinger, N Agrait, JM Cuerva, MT Gonzalez, J Am Chem Soc 2015, 137, 13818.
         | Crossref | GoogleScholarGoogle Scholar | 26452050PubMed |

[68]  L Wang, L Wang, L Zhang, D Xiang, Top Curr Chem 2017, 375, 61.
         | Crossref | GoogleScholarGoogle Scholar |

[69]  J Bails, A Daaoub, S Sangtarash, XH Li, YX Tang, Q Zou, H Sadeghi, S Liu, XJ Huang, ZB Tan, JY Liu, Y Yang, J Shi, G Meszaros, WB Chen, C Lambert, WJ Hong, Nat Mater 2019, 18, 364.

[70]  A Ismael, XT Wang, TLR Bennett, LA Wilkinson, BJ Robinson, NJ Long, LF Cohen, CJ Lambert, Chem Sci 2020, 11, 6836.
         | Crossref | GoogleScholarGoogle Scholar | 33033599PubMed |

[71]  M Schmidt, D Wassy, M Hermann, MT Gonzalez, N Agrait, LA Zotti, B Esser, E Leary, Chem Commun 2021, 57, 745.

[72]  WJ Hong, DZ Manrique, P Moreno-Garcia, M Gulcur, A Mishchenko, CJ Lambert, MR Bryce, T Wandlowski, J Am Chem Soc 2012, 134, 2292.
         | Crossref | GoogleScholarGoogle Scholar |

[73]  SY Quek, M Kamenetska, ML Steigerwald, HJ Choi, SG Louie, MS Hybertsen, JB Neaton, L Venkataraman, Nat Nanotechnol 2009, 4, 230.
         | 19350032PubMed |

[74]  WB Chen, HX Li, JR Widawsky, C Appayee, L Venkataraman, R Breslow, J Am Chem Soc 2014, 136, 918.
         | Crossref | GoogleScholarGoogle Scholar |

[75]  CW Bird, Tetrahedron 1985, 41, 1409.
         | Crossref | GoogleScholarGoogle Scholar |

[76]  W Gordy, J Chem Phys 1947, 15, 305.
         | Crossref | GoogleScholarGoogle Scholar |

[77]  SS Roy, SR Chowdhury, S Mishra, SK Patra, Chem Asian J 2020, 15, 3304.
         | Crossref | GoogleScholarGoogle Scholar | 32790947PubMed |

[78]  MA Fox, JE Harris, S Heider, V Perez-Gregorio, ME Zakrzewska, JD Farmer, DS Yufit, JAK Howard, PJ Low, J Organomet Chem 2009, 694, 2350.
         | Crossref | GoogleScholarGoogle Scholar |

[79]  SS Zalesskiy, VP Ananikov, AJ Reay, IJS Fairlamb, Inorg Synth 2018, 37, 183.

[80]  GM Sheldrick, Acta Crystallogr A 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[81]  OV Dolomanov, LJ Bourhis, RJ Gildea, JAK Howard, H Puschmann, J Appl Crystallogr 2009, 42, 339.

[82]  A Thorn, GM Sheldrick, Acta Crystallogr A 2008, 64, C221.
         | Crossref | GoogleScholarGoogle Scholar |

[83]  BQ Xu, NJJ Tao, Science 2003, 301, 1221.
         | Crossref | GoogleScholarGoogle Scholar |

[84]  L Venkataraman, JE Klare, C Nuckolls, MS Hybertsen, ML Steigerwald, Nature 2006, 442, 904.
         | Crossref | GoogleScholarGoogle Scholar | 16929295PubMed |