Singly Occupied Molecular Orbital−Highest Occupied Molecular Orbital (SOMO−HOMO) Conversion
Ryo Murata A , Zhe Wang A and Manabu Abe A BA Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan.
B Corresponding author. Email: mabe@hiroshima-u.ac.jp
Ryo Murata received his bachelor’s degree in 2021 from the University of Hiroshima. He is currently a master’s student at the Basic Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, under the supervision of Professor Manabu Abe. His current research focuses on SOMO-HOMO conversion in triplet carbenes. |
Zhe Wang received his bachelor’s degree (B.Eng.) from the China University of Petroleum (East China) in 2017. He then joined the research group of Professor Manabu Abe at Hiroshima University. He received his master’s degree (M.Sc.) from the Hiroshima University in 2019 under the supervision of Professor Dr Manabu Abe. He is currently a Ph.D. student at Hiroshima University. His research focuses on the kinetic stabilisation of singlet 2,2-dimethoxycyclopentane-1,3-diyl diradicals. |
Manabu Abe was born in Osaka, Japan. He received his Ph.D. in 1995 from the Kyoto Institute of Technology (KIT) with Professor Akira Oku. In 1995, Manabu became a faculty staff member at Osaka University (HANDAI, Professor Masatomo Nojima’s group). From 1997 to 1998, he was an Alexander-von-Humboldt fellow with Professor Dr Waldemar Adam at the Universität Würzburg in Germany. Manabu was also a visiting researcher at the LMU München (Professor Dr Herbert Mayr) in 2007. He moved to Hiroshima and became a full-time professor of Organic Chemistry at the Department of Chemistry, Graduate School of Science, Hiroshima University (HIRODAI) in 2007. His research focuses on reactive intermediates chemistry, especially on diradicals, organic photochemistry, and unusual molecules. |
Australian Journal of Chemistry 74(12) 827-837 https://doi.org/10.1071/CH21186
Submitted: 3 August 2021 Accepted: 5 October 2021 Published: 11 November 2021
Journal Compilation © CSIRO 2021 Open Access CC BY-NC-ND
Abstract
Singly occupied molecular orbital−highest occupied molecular orbital (SOMO−HOMO) conversion (inversion), SHC, is a phenomenon in which the SOMO is lower in energy than the doubly occupied molecular orbitals (DOMO, HOMO). A non-Aufbau electronic structure leads to unique properties such as a switch in bond dissociation energy and the generation of high-spin species on one-electron oxidation. In addition, the pronounced photostability of these species has been reported recently for application in organic light-emitting devices. In this review article, we summarise the chemistry of SOMO−HOMO converted (inverted) species reported to date.
Keywords: SOMO–HOMO conversion, SOMO–HOMO inversion, high spin species, open shell species, radicals, carbenes, quantum chemical calculation, DFT calculation.
References
[1] K. Fukui, T. Yonezawa, H. Shingu, J. Chem. Phys. 1952, 20, 722.| Crossref | GoogleScholarGoogle Scholar |
[2] T. Sugimoto, S. Yamaga, M. Nakai, K. Ohmori, M. Tsujii, H. Nakatsuji, H. Fujita, J. Yamauchi, Chem. Lett. 1993, 22, 1361.
| Crossref | GoogleScholarGoogle Scholar |
[3] T. Kusamoto, S. Kume, H. Nishihara, J. Am. Chem. Soc. 2008, 130, 13844.
| Crossref | GoogleScholarGoogle Scholar | 18821762PubMed |
[4] A. Kumar, M. D. Sevilla, J. Phys. Chem. B 2014, 118, 5453.
| Crossref | GoogleScholarGoogle Scholar | 24798145PubMed |
[5] G. Gryn’ova, M. L. Coote, C. Corminboeuf, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5, 440.
| Crossref | GoogleScholarGoogle Scholar | 27774112PubMed |
[6] R. Kumai, M. M. Matsushita, A. Izuoka, T. Sugawara, J. Am. Chem. Soc. 1994, 116, 4523.
| Crossref | GoogleScholarGoogle Scholar |
[7] R. Kumai, H. Sakurai, A. Izuoka, T. Sugawara, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 1996, 279, 133.
| Crossref | GoogleScholarGoogle Scholar |
[8] J. Nakazaki, M. M. Matsushita, A. Izuoka, T. Sugawara, Tetrahedron Lett. 1999, 40, 5027.
| Crossref | GoogleScholarGoogle Scholar |
[9] H. Sakurai, A. Izuoka, T. Sugawara, J. Am. Chem. Soc. 2000, 122, 9723.
| Crossref | GoogleScholarGoogle Scholar |
[10] J. Nakazaki, Y. Ishikawa, A. Izuoka, T. Sugawara, Y. Kawada, Chem. Phys. Lett. 2000, 319, 385.
| Crossref | GoogleScholarGoogle Scholar |
[11] A. Izuoka, M. Hiraishi, T. Abe, T. Sugawara, K. Sato, T. Takui, J. Am. Chem. Soc. 2000, 122, 3234.
| Crossref | GoogleScholarGoogle Scholar |
[12] J. Nakazaki, I. G. Chung, M. M. Matsushita, T. Sugawara, R. Watanabe, A. Izuoka, Y. Kawada, J. Mater. Chem. 2003, 13, 1011.
| Crossref | GoogleScholarGoogle Scholar |
[13] S. Hiraoka, T. Okamoto, M. Kozaki, D. Shiomi, K. Sato, T. Takui, K. Okada, J. Am. Chem. Soc. 2004, 126, 58.
| Crossref | GoogleScholarGoogle Scholar | 14709058PubMed |
[14] M. M. Matsushita, H. Kawakami, Y. Kawada, T. Sugawara, Chem. Lett. 2007, 36, 110.
| Crossref | GoogleScholarGoogle Scholar |
[15] H. Komatsu, R. Mogi, M. M. Matsushita, T. Miyagi, Y. Kawada, T. Sugawara, Polyhedron 2009, 28, 1996.
| Crossref | GoogleScholarGoogle Scholar |
[16] M. M. Matsushita, H. Kawakami, T. Sugawara, M. Ogata, Phys. Rev. B Condens. Matter Mater. Phys. 2008, 77, 1.
| Crossref | GoogleScholarGoogle Scholar |
[17] T. Sugawara, M. M. Matsushita, J. Mater. Chem. 2009, 19, 1738.
| Crossref | GoogleScholarGoogle Scholar |
[18] H. Komatsu, M. M. Matsushita, S. Yamamura, Y. Sugawara, K. Suzuki, T. Sugawara, J. Am. Chem. Soc. 2010, 132, 4528.
| Crossref | GoogleScholarGoogle Scholar | 20222711PubMed |
[19] T. Sugawara, H. Komatsu, K. Suzuki, Chem. Soc. Rev. 2011, 40, 3105.
| Crossref | GoogleScholarGoogle Scholar | 21409235PubMed |
[20] T. Kusamoto, S. Kume, H. Nishihara, Angew. Chem. Int. Ed. 2010, 49, 529.
| Crossref | GoogleScholarGoogle Scholar |
[21] G. Gryn’ova, D. L. Marshall, S. J. Blanksby, M. L. Coote, Nat. Chem. 2013, 5, 474.
| Crossref | GoogleScholarGoogle Scholar | 23695628PubMed |
[22] G. Gryn’ova, M. L. Coote, J. Am. Chem. Soc. 2013, 135, 15392.
| Crossref | GoogleScholarGoogle Scholar | 24090128PubMed |
[23] P. Franchi, E. Mezzina, M. Lucarini, J. Am. Chem. Soc. 2014, 136, 1250.
| Crossref | GoogleScholarGoogle Scholar | 24410365PubMed |
[24] S. So, B. B. Kirk, U. Wille, A. J. Trevitt, S. J. Blanksby, G. Da Silva, Phys. Chem. Chem. Phys. 2020, 22, 2130.
| Crossref | GoogleScholarGoogle Scholar | 31912066PubMed |
[25] A. Kumar, M. D. Sevilla, J. Phys. Chem. B 2018, 122, 98.
| Crossref | GoogleScholarGoogle Scholar | 29240424PubMed |
[26] Y. Wang, H. Zhang, M. Pink, A. Olankitwanit, S. Rajca, A. Rajca, J. Am. Chem. Soc. 2016, 138, 7298.
| Crossref | GoogleScholarGoogle Scholar | 27219299PubMed |
[27] A. Rajca, C. Shu, H. Zhang, S. Zhang, H. Wang, S. Rajca, Photochem. Photobiol. 2021,
| Crossref | GoogleScholarGoogle Scholar | 34152605PubMed |
[28] S. Kasemthaveechok, L. Abella, M. Jean, M. Cordier, T. Roisnel, N. Vanthuyne, T. Guizouarn, O. Cador, J. Autschbach, J. Crassous, L. Favereau, J. Am. Chem. Soc. 2020, 142, 20409.
| Crossref | GoogleScholarGoogle Scholar |
[29] A. Tanushi, S. Kimura, T. Kusamoto, M. Tominaga, Y. Kitagawa, M. Nakano, H. Nishihara, J. Phys. Chem. C 2019, 123, 4417.
| Crossref | GoogleScholarGoogle Scholar |
[30] H. Guo, Q. Peng, X. Chen, Q. Gu, S. Dong, E. W. Evans, A. J. Gillett, X. Ai, M. Zhang, D. Credgington, V. Coropceanu, R. H. Friend, J. Brédas, F. Li, Nat. Mater. 2019, 18, 977.
| Crossref | GoogleScholarGoogle Scholar | 31332338PubMed |
[31] E. Cho, V. Coropceanu, J. L. Brédas, J. Am. Chem. Soc. 2020, 142, 17782.
| Crossref | GoogleScholarGoogle Scholar | 32997939PubMed |
[32] T. Tsuchiya, Y. Katsuoka, K. Yoza, H. Sato, Y. Mazaki, ChemPlusChem 2019, 84, 1659.
| Crossref | GoogleScholarGoogle Scholar | 31943874PubMed |
[33] S. Medina Rivero, R. Shang, H. Hamada, Q. Yan, H. Tsuji, E. Nakamura, J. Casado, Bull. Chem. Soc. Jpn. 2021, 94, 989.
| Crossref | GoogleScholarGoogle Scholar |
[34] L. Abella, J. Crassous, L. Favereau, J. Autschbach, Chem. Mater. 2021, 33, 3678.
| Crossref | GoogleScholarGoogle Scholar |
[35] R. Murata, Z. Wang, Y. Miyazawa, I. Antol, S. Yamago, M. Abe, Org. Lett. 2021, 23, 4955.
| Crossref | GoogleScholarGoogle Scholar | 34048267PubMed |
[36] T. Iwamoto, Y. Watanabe, Y. Sakamoto, T. Suzuki, S. Yamago, J. Am. Chem. Soc. 2011, 133, 8354.
| Crossref | GoogleScholarGoogle Scholar | 21542589PubMed |
[37] Z. Wang, R. Murata, M. Abe, ACS Omega 2021, 6, 22773.
| Crossref | GoogleScholarGoogle Scholar | 34514248PubMed |
[38] (a) M. Abe, J. Ye, M. Mishima, Chem. Soc. Rev. 2012, 41, 3808.
| Crossref | GoogleScholarGoogle Scholar | 22377794PubMed |
(b) Z. Wang, R. Akisaka, S. Yabumoto, T. Nakagawa, S. Hatano, M. Abe, Chem. Sci. 2021, 12, 613.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Abe, H. Furunaga, D. Ma, L. Gagliardi, G. J. Bodwell, J. Org. Chem. 2012, 77, 7612.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. Nakamura, A. Takegami, M. Abe, J. Org. Chem. 2010, 75, 1956.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Abe, S. Kawanami, C. Ishihara, M. Nojima, J. Org. Chem. 2004, 69, 5622.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. Abe, C. Ishihara, A. Tagegami, J. Org. Chem. 2004, 69, 7250.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. Abe, Chem. Rev. 2013, 113, 7011.
| Crossref | GoogleScholarGoogle Scholar |