A Novel Fluorescent Aptasensor for Sensitive Detection of Oxytetracycline Based on Gold Nanoparticles and OTC-Eu3+ Complex Using Two Different Methods for Modification of Gold Nanoparticles
Hamideh Sharifi Noghabi A , Khalil Abnous B C F , Seyed Mohammad Taghdisi D E F and Mahmoud Chamsaz A FA Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
B Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran.
C Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran.
D Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran.
E Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran.
F Corresponding authors. Email: abnouskh@mums.ac.ir; taghdisihm@mums.ac.ir; mchamsaz@gmail.com
Australian Journal of Chemistry 74(9) 669-675 https://doi.org/10.1071/CH21150
Submitted: 2 July 2021 Accepted: 17 August 2021 Published: 21 September 2021
Abstract
We developed a simple and selective fluorescent aptasensor for the detection of oxytetracycline (OTC) using aptamer-conjugated gold nanoparticles (AuNPs) and a complex formed between oxytetracycline and a europium cation. In this study, AuNPs were modified with an OTC aptamer using two methods (Tween and NaCl methods). In the absence of OTC, an OTC-Eu3+ complex binds to the aptamer in the aptamer-conjugated AuNPs to give weak fluorescence emission. However, in the presence of OTC, the aptamer interacts with its target, causing a strong fluorescence emission. Under optimum conditions, the designed method showed high selectivity for OTC and a good linear range to OTC concentration from 15 to 500 nM with a limit of detection (LOD) of 10.6 nM for the NaCl method and linear range over 15–500 nM with an LOD of 8.8 nM for the Tween method. This biosensor was successfully employed to quantify OTC in milk and tablet samples.
Keywords: gold nanoparticles, oxytetracycline, NaCl, fluorescent aptasensor, Tween.
References
[1] (a) M. Esmaelpourfarkhani, K. Abnous, S. M. Taghdisi, M. Chamsaz, Microchim. Acta 2019, 186, 290.| Crossref | GoogleScholarGoogle Scholar |
(b) M. Hosseini, F. Mehrabi, M. R. Ganjali, P. Norouzi, Luminescence 2016, 31, 1339.
| Crossref | GoogleScholarGoogle Scholar |
[2] Z.-j. Li, W.-n. Qi, F. Yao, Y.-w. Liu, S. Ebrahim, L. Jian, J. Integr. Agric. 2019, 18, 1953.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) W. Chen, W. Liu, N. Pan, W. Jiao, M. Wang, J. Soil Sci. Plant Nutr. 2013, 13, 967.
| Crossref | GoogleScholarGoogle Scholar |
(b) H. B. Seo, Y. S. Kwon, J.-e. Lee, D. Cullen, H. M. Noh, M. B. Gu, Analyst 2015, 140, 6671.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) T. Le, H. Yu, Z. Zhao, W. Wei, Anal. Lett. 2012, 45, 386.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. Naik, R. Sharma, B. Mann, K. Lata, Y. Rajput, B. S. Nath, Food Chem. 2017, 219, 85.
| Crossref | GoogleScholarGoogle Scholar |
[5] P. S. McManus, V. O. Stockwell, G. W. Sundin, A. L. Jones, Annu. Rev. Phytopathol. 2002, 40, 443.
| Crossref | GoogleScholarGoogle Scholar | 12147767PubMed |
[6] (a) Y. Wu, S. Zheng, Y. Ye, H. Guo, F. Yang, J. Photochem. Photobiol. Chem. 2021, 412, 113219.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. Gao, Z. Liu, J. Chen, Z. Yan, Luminescence 2013, 28, 378.
| Crossref | GoogleScholarGoogle Scholar |
[7] A. Pena, N. Pelantova, C. Lino, M. Silveira, P. Solich, J. Agric. Food Chem. 2005, 53, 3784.
| Crossref | GoogleScholarGoogle Scholar | 15884797PubMed |
[8] Y. Zhu, P. Chandra, K.-M. Song, C. Ban, Y.-B. Shim, Biosens. Bioelectron. 2012, 36, 29.
| Crossref | GoogleScholarGoogle Scholar | 22542925PubMed |
[9] N. Xu, Y. Yuan, J.-H. Yin, X. Wang, L. Meng, RSC Adv. 2017, 7, 48429.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) C. Feng, S. Dai, L. Wang, Biosens. Bioelectron. 2014, 59, 64.
| Crossref | GoogleScholarGoogle Scholar | 24690563PubMed |
(b) Y. Liu, J. Yu, Y. Wang, Z. Liu, Z. Lu, Sens. Actuators B Chem. 2016, 222, 797.
| Crossref | GoogleScholarGoogle Scholar |
(c) K.-M. Song, S. Lee, C. Ban, Sensors 2012, 12, 612.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. Meng, X. Ma, N. Duan, S. Wu, Y. Xia, Z. Wang, et al. Talanta 2017, 165, 412.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) K. Abnous, N. M. Danesh, M. Ramezani, S. M. Taghdisi, A. S. Emrani, Anal. Chim. Acta 2018, 1020, 110.
| Crossref | GoogleScholarGoogle Scholar | 29655421PubMed |
(b) A. Bahreyni, R. Yazdian-Robati, M. Ramezani, K. Abnous, S. M. Taghdisi, Microchim. Acta 2018, 185, 272.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Man, J. Ren, B. Li, X. Jin, L. Pan, Anal. Bioanal. Chem. 2018, 410, 7511.
| Crossref | GoogleScholarGoogle Scholar |
(d) E. R. Santana, C. A. de Lima, J. V. Piovesan, A. Spinelli, Sens. Actuators B Chem. 2017, 240, 487.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) S. Bhowmick, S. Saini, V. B. Shenoy, B. Bagchi, J. Chem. Phys. 2006, 125, 181102.
| Crossref | GoogleScholarGoogle Scholar | 17115730PubMed |
(b) T. Jennings, M. Singh, G. Strouse, J. Am. Chem. Soc. 2006, 128, 5462.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, et al. J. Am. Chem. Soc. 2005, 127, 3115.
| Crossref | GoogleScholarGoogle Scholar |
[13] Q. Song, R. Wang, F. Sun, H. Chen, Z. Wang, N. Na, et al. Biosens. Bioelectron. 2017, 87, 760.
| Crossref | GoogleScholarGoogle Scholar | 27649332PubMed |
[14] M. Li, P. R. Selvin, Bioconjug. Chem. 1997, 8, 127.
| Crossref | GoogleScholarGoogle Scholar | 9095352PubMed |
[15] S. Syamchand, G. Sony, J. Lumin. 2015, 165, 190.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) M. Kaczmarek, S. Lis, Anal. Chim. Acta 2009, 639, 96.
| Crossref | GoogleScholarGoogle Scholar | 19345765PubMed |
(b) L. C. Courrol, F. R. de Oliveira Silva, L. Gomes, N. D. V. Júnior, J. Lumin. 2007, 122–123, 288.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) L. Liu, G. Chen, M. L. Fishman, Anal. Chim. Acta 2005, 528, 261.
| Crossref | GoogleScholarGoogle Scholar |
(b) T. D.-F. López, A. F. González, M. E. Díaz-García, R. Badía-Laíño, Carbon 2015, 94, 142.
| Crossref | GoogleScholarGoogle Scholar |
[18] G. A. Ibañez, Talanta 2008, 75, 1028.
| Crossref | GoogleScholarGoogle Scholar | 18585179PubMed |
[19] V. V. Mokashi, A. H. Gore, V. Sudarsan, M. C. Rath, S. H. Han, S. R. Patil, et al. J. Photochem. Photobiol. B 2012, 113, 63.
| Crossref | GoogleScholarGoogle Scholar | 22673014PubMed |
[20] M. Esmaelpourfarkhani, K. Abnous, S. M. Taghdisi, M. Chamsaz, Biosens. Bioelectron. 2020, 164, 112329.
| Crossref | GoogleScholarGoogle Scholar | 32553354PubMed |
[21] H. Hu, H. Li, Y. Zhao, S. Dong, W. Li, W. Qiang, et al. Anal. Chim. Acta 2014, 812, 152.
| Crossref | GoogleScholarGoogle Scholar | 24491776PubMed |
[22] S. D. Jayasena, Clin. Chem. 1999, 45, 1628.
| Crossref | GoogleScholarGoogle Scholar | 10471678PubMed |
[23] X. Zhang, M. R. Servos, J. Liu, J. Am. Chem. Soc. 2012, 134, 7266.
| Crossref | GoogleScholarGoogle Scholar | 22506486PubMed |
[24] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Science 1997, 277, 1078.
| Crossref | GoogleScholarGoogle Scholar | 9262471PubMed |
[25] S. J. Hurst, A. K. Lytton-Jean, C. A. Mirkin, Anal. Chem. 2006, 78, 8313.
| Crossref | GoogleScholarGoogle Scholar | 17165821PubMed |
[26] S. Xu, H. Yuan, A. Xu, J. Wang, L. Wu, Langmuir 2011, 27, 13629.
| Crossref | GoogleScholarGoogle Scholar | 21961996PubMed |
[27] R. Jin, G. Wu, Z. Li, C. A. Mirkin, G. C. Schatz, J. Am. Chem. Soc. 2003, 125, 1643.
| Crossref | GoogleScholarGoogle Scholar | 12568626PubMed |
[28] Y. S. Kim, J. H. Kim, I. A. Kim, S. J. Lee, J. Jurng, M. B. Gu, Biosens. Bioelectron. 2010, 26, 1644.
| Crossref | GoogleScholarGoogle Scholar | 20829027PubMed |
[29] H. Zhao, S. Gao, M. Liu, Y. Chang, X. Fan, X. Quan, Microchim. Acta 2013, 180, 829.
| Crossref | GoogleScholarGoogle Scholar |
[30] W. E. Wick, Appl. Microbiol. 1967, 15, 765.
| Crossref | GoogleScholarGoogle Scholar | 4383049PubMed |
[31] I. Naqvi, A. Saleemi, S. Naveed, Int. J. Electrochem. Sci. 2011, 6, 146.
[32] M. L. Nelson, S. B. Levy, Ann. N. Y. Acad. Sci. 2011, 1241, 17.
| Crossref | GoogleScholarGoogle Scholar | 22191524PubMed |
[33] H. Hou, X. Bai, C. Xing, N. Gu, B. Zhang, J. Tang, Anal. Chem. 2013, 85, 2010.
| Crossref | GoogleScholarGoogle Scholar | 23350586PubMed |
[34] D. Zheng, X. Zhu, X. Zhu, B. Bo, Y. Yin, G. Li, Analyst 2013, 138, 1886.
| Crossref | GoogleScholarGoogle Scholar | 23381199PubMed |
[35] J. Sun, T. Gan, H. Zhu, Z. Shi, Y. Liu, Appl. Clay Sci. 2014, 101, 598.
| Crossref | GoogleScholarGoogle Scholar |
[36] A. Imani-Nabiyyi, M. H. Sorouraddin, M. Amjadi, A. Naseri, J. Lumin. 2014, 151, 57.
| Crossref | GoogleScholarGoogle Scholar |
[37] K. Yan, Y. Liu, Y. Yang, J. Zhang, Anal. Chem. 2015, 87, 12215.
| Crossref | GoogleScholarGoogle Scholar | 26551579PubMed |
[38] C. Liu, C. Lu, Z. Tang, X. Chen, G. Wang, F. Sun, Microchim. Acta 2015, 182, 2567.
| Crossref | GoogleScholarGoogle Scholar |
[39] J. Ghodsi, A. A. Rafati, Y. Shoja, Sens. Actuators B Chem. 2016, 224, 692.
| Crossref | GoogleScholarGoogle Scholar |
[40] M. Babaei, S. H. Jalalian, H. Bakhtiari, M. Ramezani, K. Abnous, S. M. Taghdisi, Aust. J. Chem. 2017, 70, 718.
| Crossref | GoogleScholarGoogle Scholar |
[41] J. Lv, X. Chen, S. Chen, H. Li, H. Deng, J. Electroanal. Chem. (Lausanne) 2019, 842, 161.
| Crossref | GoogleScholarGoogle Scholar |
[42] A. Mohebi, M. Samadi, H. R. Tavakoli, K. Parastouei, Microchem. J. 2020, 157, 104988.
| Crossref | GoogleScholarGoogle Scholar |