Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Introducing Pseudoramps and Mixed Ramp-Gaussian Jensen Basis Sets for Better Nuclear Densities

Claudia S. Cox https://orcid.org/0000-0002-6492-4822 A and Laura K. McKemmish https://orcid.org/0000-0003-1039-2143 A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University of New South Wales, Kensington, NSW 2052, Australia.

B Corresponding author. Email: l.mckemmish@unsw.edu.au




Dr Laura McKemmish is an emerging leader in computational molecular spectroscopy. As both a quantum chemist and molecular physicist, she uses cutting-edge computational techniques to enable discoveries in astrochemistry. After completing her undergraduate studies at the University of Sydney, Ph.D. degree at the Australian National University, and post-doctoral research under a Marie Skłodowska-Curie research fellowship at University College London, Laura has been building her research team in the School of Chemistry at University of New South Wales since 2018, where she continues to be amazed by the quality and enthusiasm of her students.

Australian Journal of Chemistry 75(2) 126-134 https://doi.org/10.1071/CH21092
Submitted: 16 April 2021  Accepted: 28 June 2021   Published: 22 July 2021

Journal Compilation © CSIRO 2022 Open Access CC BY-NC

Abstract

Gaussian basis sets dominate quantum chemistry but struggle to model near-core electron densities and thus nuclear magnetic resonance (NMR) spectral properties. Mixed ramp-Gaussian (RG) basis sets show significant promise for these core properties due to the inclusion of a ramp-function with a non-zero nuclear-electron cusp. To enable quicker testing of the potential of RG basis sets for core chemistry, here we approximate ramps as a large linear combination of Gaussians called pseudoramps, thus enabling standard quantum chemistry packages to be used to approximate RG basis set results. We produce and test rampified general-purpose segmented Jensen basis sets. These basis sets retain the valence chemistry of their parent all-Gaussian basis sets, as desired, but unfortunately fail to show significantly improved performance in core chemistry. Crucially, for NMR spin-spin couplings (the most promising potential application of RG basis sets), general-purpose basis sets are so poorly performing that results cannot be interpreted. For chemical shifts, P-ramps are likely required for improved performance. We conclude that the use of pseudoramps to test the performance of ramp-Gaussian basis sets is extremely helpful, decoupling methodology development and evaluation from implementation, but that more sophisticated basis set optimisation will be required to identify potential advantages of ramp-Gaussian basis sets over all-Gaussian basis sets.

Keywords: basis sets, ramp-Gaussian basis sets, quantum chemistry, computational chemistry, core chemistry, NMR spectroscopy, basis set construction, molecular quantum chemistry.


References

[1]  F. Jensen, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013, 3, 273.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  J. G. Hill, Int. J. Quantum Chem. 2013, 113, 21.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  B. Nagy, F. Jensen, Rev. Comput. Chem. 2017, 30, 93.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  P. M. W. Gill, Adv. Quantum Chem. 1994, 25, 141.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  S. Reine, T. Helgaker, R. Lindh, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 290.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  L. K. McKemmish, P. M. Gill, J. Chem. Theory Comput. 2012, 8, 4891.
         | Crossref | GoogleScholarGoogle Scholar | 26593182PubMed |

[7]  F. Jensen, J. Chem. Theory Comput. 2008, 4, 719.
         | Crossref | GoogleScholarGoogle Scholar | 26621087PubMed |

[8]  F. Jensen, J. Chem. Theory Comput. 2015, 11, 132.
         | Crossref | GoogleScholarGoogle Scholar | 26574211PubMed |

[9]  F. Jensen, Theor. Chem. Acc. 2010, 126, 371.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  U. Benedikt, A. A. Auer, F. Jensen, J. Chem. Phys. 2008, 129, 064111.
         | Crossref | GoogleScholarGoogle Scholar | 18715055PubMed |

[11]  M. A. Ambroise, F. Jensen, J. Chem. Theory Comput. 2019, 15, 325.
         | Crossref | GoogleScholarGoogle Scholar | 30495950PubMed |

[12]  L. K. McKemmish, A. T. Gilbert, P. M. Gill, J. Chem. Theory Comput. 2014, 10, 4369.
         | Crossref | GoogleScholarGoogle Scholar | 26588134PubMed |

[13]  D. M. Bishop, J. Chem. Phys. 1964, 40, 1322.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  D. M. Bishop, J. Chem. Phys. 1968, 48, 291.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  L. K. McKemmish, J. Chem. Phys. 2015, 142, 134104.
         | Crossref | GoogleScholarGoogle Scholar | 25854225PubMed |

[16]  L. K. McKemmish, A. T. Gilbert, J. Chem. Theory Comput. 2015, 11, 3679.
         | Crossref | GoogleScholarGoogle Scholar | 26574451PubMed |

[17]  D. M. Bishop, J. Chem. Phys. 1964, 40, 1322.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  D. M. Bishop, J. Chem. Phys. 1968, 48, 291.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  E. Steiner, S. Sykes, Mol. Phys. 1972, 23, 643.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  E. Steiner, Mol. Phys. 1972, 23, 657.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  E. Steiner, Mol. Phys. 1972, 23, 669.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  E. Steiner, B. C. Walsh, J. Chem. Soc., Faraday Trans. II 1975, 71, 921.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  E. Steiner, B. C. Walsh, J. Chem. Soc., Faraday Trans. II 1975, 71, 926.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  E. Steiner, J. Chem. Soc., Faraday Trans. II 1980, 76, 391.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  E. Steiner, J. Chem. Soc., Faraday Trans. II 1985, 81, 1101.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  E. Steiner, J. Chem. Soc., Faraday Trans. II 1987, 83, 783.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  C. Cox, J. C. Zapata, L. McKemmish, Aust. J. Chem. 2020, 73, 911.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  T. Gould, Phys. Chem. Chem. Phys. 2018, 20, 27735.
         | Crossref | GoogleScholarGoogle Scholar | 30387792PubMed |

[29]  L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, S. Grimme, Phys. Chem. Chem. Phys. 2017, 19, 32184.
         | Crossref | GoogleScholarGoogle Scholar | 29110012PubMed |

[30]  P. Morgante, R. Peverati, J. Comput. Chem. 2019, 40, 839.
         | Crossref | GoogleScholarGoogle Scholar | 30582189PubMed |

[31]  Wolfram Inc., Mathematica, Version 12.2 2020 (Wolfram: Champaign, IL).

[32]  Y.-S. Lin, G.-D. Li, S.-P. Mao, J.-D. Chai, J. Chem. Theory Comput. 2013, 9, 263.
         | Crossref | GoogleScholarGoogle Scholar | 26589028PubMed |

[33]  F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1327.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  Y. Shao, Z. Gan, E. Epifanovsky, A. T. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, et al. Mol. Phys. 2015, 113, 184.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  T. Helgaker, W. Klopper, D. P. Tew, Mol. Phys. 2008, 106, 2107.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  F. Neese, Inorg. Chim. Acta 2002, 337, 181.
         | Crossref | GoogleScholarGoogle Scholar |