Evaluation of Calcium Binding Capacity of Chelating Agents in Calcium Carbonate Suspension and Effects on Calcium Distribution of Calcium Chelating Agents
Mingyue Song A , Leping Dang A B and Hongyuan Wei A BA School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
B Corresponding authors. Email: dangleping@tju.edu.cn; crystallization.wei@hotmail.com
Australian Journal of Chemistry 74(7) 557-563 https://doi.org/10.1071/CH20376
Submitted: 23 December 2020 Accepted: 17 March 2021 Published: 6 April 2021
Abstract
In this study, the binding capacity of calcium ions of sodium tripolyphosphate (STPP), tetrasodium pyrophosphate (TSPP), trisodium citrate (TSC), and potassium oxalate (PO) were evaluated, and the calcium distribution in the presence of STPP and TSPP in CaCl2 solutions (50 mmol L−1) were investigated. Under conditions simulating industrial toothpaste, the concentration of fluoride in calcium carbonate suspensions (30 g/50 g) was measured by ion chromatography to investigate the effects of chelating agents on calcium ions. Among all the chelating agents, STPP and TSPP have the highest retention rate of fluoride, indicating better calcium binding capacity. Preliminary studies were carried out in CaCl2 solutions to investigate the influence of concentration and pH on the chelating performance of STPP and TSPP. The distribution of free calcium, chelated calcium, and precipitated calcium in CaCl2 solution in the presence of STPP and TSPP were investigated to reveal two different calcium-chelation mechanisms and laws for STPP and TSPP. This work has a positive guiding significance for the stabilisation of calcium and fluoride in toothpaste formula.
Keywords: sodium tripolyphosphate, tetrasodium pyrophosphate, chelation, precipitation, calcium distribution, toothpaste, fluoride, stability constant.
References
[1] A. Lussi, E. Hellwig, J. Klimek, Schweiz. Monatsschr. Zahnmed. 2012, 122, 1030.| 23192605PubMed |
[2] P. Shen, G. D. Walker, Y. Yuan, C. Reynolds, D. P. Stanton, J. R. Fernando, E. C. Reynolds, J. Dent. 2018, 78, 59.
| Crossref | GoogleScholarGoogle Scholar | 30099066PubMed |
[3] R. J. Sullivan, J. Master, R. Cantore, A. Roberson, I. Petrou, M. Stranick, H. Goldman, B. Guggenheim, A. Gaffar, Am. J. Dent. 2001, 14, 3A.
| Crossref | GoogleScholarGoogle Scholar | 11481928PubMed |
[4] S. H. Welling, F. Hubálek, J. Jacobsen, D. J. Brayden, U. L. Rahbek, S. T. Buckley, Eur. J. Pharm. Biopharm. 2014, 86, 544.
| Crossref | GoogleScholarGoogle Scholar | 24384069PubMed |
[5] A. C. Garcia, M. Vavrusovaa, L. H. Skibsted, Food Res. Int. 2018, 107, 195.
| Crossref | GoogleScholarGoogle Scholar | 29580478PubMed |
[6] S. Kaliappan, J. A. Lucey, J. Dairy Sci. 2011, 94, 4255.
| Crossref | GoogleScholarGoogle Scholar | 21854899PubMed |
[7] R. F. Chen, R. F. Shen, X. D. Yang, X. Wang, J. Plant Nutr. Soil Sci. 2010, 173, 788.
| Crossref | GoogleScholarGoogle Scholar |
[8] Y. Wang, D. Sun, L. Wang, Y. Zhou, Miner. Eng. 2011, 24, 1031.
| Crossref | GoogleScholarGoogle Scholar |
[9] F. Rashchi, J. A. Finch, Miner. Eng. 2000, 13, 1019.
| Crossref | GoogleScholarGoogle Scholar |
[10] C. He, J. Ye, Y. Gao, C. Liu, X. Pan, J. Mol. Sci. 2015, 31, 198.
| Crossref | GoogleScholarGoogle Scholar |
[11] R. D. Fisher, J. V. Hanna, G. J. Rees, R. I. Walton, J. Mater. Chem. 2012, 22, 4837.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. Tian, F. Chen, W. Song, Y. Song, Y. Chen, C. Wang, X. Yu, X. Zhang, J. Mater. Sci. 2009, 20, 1505.
| Crossref | GoogleScholarGoogle Scholar |
[13] P. Gras, C. Rey, O. Marsan, S. Sarda, C. Combes, Eur. J. Inorg. Chem. 2013, 5886.
| Crossref | GoogleScholarGoogle Scholar |
[14] A. Papo, L. Piani, R. Ricceri, Colloids Surf. A. 2002, 201, 219.
| Crossref | GoogleScholarGoogle Scholar |
[15] H. Tan, B. Ma, X. Li, S. Jian, H. Yang, J. Wuhan Univ. Technol. Mater. Sci. Ed. 2014, 29, 334.
| Crossref | GoogleScholarGoogle Scholar |
[16] C. Slater, D. Laurencin, V. Burnell, M. E. Smith, L. M. Grover, J. A. Hriljac, A. J. Wright, J. Mater. Chem. 2011, 21, 18783.
| Crossref | GoogleScholarGoogle Scholar |
[17] T. P. Guinee, M. Carić, M. Kaláb, Cheese: Chem. Phys. Microbiol. 2004, 2, 349.
| Crossref | GoogleScholarGoogle Scholar |
[18] P. F. Fox, T. P. O’Connor, P. L. Mcsweeney, T. P. Guinee, N. M. O’Brien, Adv. Food Nutr. Res. 1996, 39, 163.
| Crossref | GoogleScholarGoogle Scholar | 8794552PubMed |
[19] I. Nakajima, G. Kawanishi, E. Furuichi, Agric. Biol. Chem. 1975, 39, 979.
| Crossref | GoogleScholarGoogle Scholar |
[20] P. Pfeiffer, H. Simons, Ber. Dtsch. Chem. Ges. 1943, 76, 847.
| Crossref | GoogleScholarGoogle Scholar |
[21] M. Vavrusova, L. H. Skibsted, Int. Dairy J. 2016, 57, 20.
| Crossref | GoogleScholarGoogle Scholar |
[22] R. J. Van Wazer, C. F. Callis, Chem. Rev. 1958, 58, 1011.
| Crossref | GoogleScholarGoogle Scholar |
[23] I. McIntyre, M. O. Sullivan, D. O. Riordan, Food Chem. 2016, 197, 233.
| Crossref | GoogleScholarGoogle Scholar | 26616945PubMed |
[24] W. Gan, B. Crozier, Q. Liu, Int. J. Miner. Process. 2009, 92, 84.
| Crossref | GoogleScholarGoogle Scholar |
[25] Z. Pan, Y. Wang, Q. Wei, X. Chen, F. Jiao, W. Qin, Separ. Purif. Tech. 2020, 242, 116408.
| Crossref | GoogleScholarGoogle Scholar |