Furoate Based Functionalised Ionic Liquid: Antimicrobial and Antioxidant Studies
R. Rama A C , S. Meenakshi A , J. Manjunathan B , G. Abirami B and S. Karthikeyan AA Department of Chemistry, School of Basic Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai-600117, Tamil Nadu, India.
B Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai-600117, Tamil Nadu, India.
C Corresponding author. Email: rama.ragu10@gmail.com
Australian Journal of Chemistry 74(3) 186-191 https://doi.org/10.1071/CH20178
Submitted: 2 June 2020 Accepted: 11 August 2020 Published: 15 September 2020
Abstract
A tetraalkyl ammonium cation and furoate anion based functionalised ionic liquid (FIL), N-methyl-N,N,N-trioctylammonium furoate ([MTOA]+[FA]–) has been synthesised and characterised using FT-IR, NMR, and UV spectroscopic techniques. The in vitro antimicrobial activity of the synthesised FIL against two types of Gram-positive bacteria, namely Staphylococcus aureus and Enterobacter faecalis as well as Gram-negative bacteria, namely Escherichia coli and Pseudomonas aeruginosa was tested using a well diffusion method. Similarly, an antifungal test was done against Candida albicans. [MTOA]+[FA]– showed significant inhibitory effect against all the organisms tested as compared with the chosen standards. Antibacterial activity against gram-positive bacteria (zone of inhibition: 16 to 30 mm) was found to be higher than that of Gram-negative bacteria (zone of inhibition: 11 to 19 mm). Moreover, the antioxidant activity of the synthesised FIL from a ferrous ion (Fe2+) chelating assay and its scavenging activity against 1,1-diphenyl-2-picrylhydrazyl, H2O2, and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical using spectrophotometric methods are reported. The FIL, [MTOA]+[FA]– showed a moderate antioxidant activity.
References
[1] B. Bromberger, J. Sommer, C. Robben, C. Trautner, R. Kalb, P. Rossmanith, P. J. Mester, Sep. Purif. Technol. 2020, 251, 117309.| Crossref | GoogleScholarGoogle Scholar |
[2] A. Miskiewicz, P. Ceranowicz, M. Szymczak, K. Bartuś, P. Kowalczyk, Int. J. Mol. Sci. 2018, 19, 2779.
| Crossref | GoogleScholarGoogle Scholar |
[3] R. L. Tundis, G. Frattaruolo, B. Carullo, M. Armentano, M. R. Badolato, M. R. Loizzo, F. Aiello, A. R. Cappello, Nat. Prod. Res. 2019, 33, 162.
| Crossref | GoogleScholarGoogle Scholar |
[4] J. M. Gomes, S. S. Silva, R. L. Reis, Chem. Soc. Rev. 2019, 48, 4317.
| Crossref | GoogleScholarGoogle Scholar | 31225558PubMed |
[5] J. Yu, S. Zhang, Y. Dai, X. Lu, Q. Lei, W. Fang, J. Hazard. Mater. 2016, 307, 73.
| Crossref | GoogleScholarGoogle Scholar | 26775108PubMed |
[6] W. M. Chai, X. Liu, Y. H. Hu, H. L. Feng, Y. L. Jia, Y. J. Guo, H. T. Zhou, Q. X. Chen, Int. J. Biol. Macromol. 2013, 57, 151.
| Crossref | GoogleScholarGoogle Scholar | 23466497PubMed |
[7] F. Wen, H. Jin, K. Tao, T. Hou, Eur. J. Med. Chem. 2016, 120, 244.
| Crossref | GoogleScholarGoogle Scholar | 27191618PubMed |
[8] W. L. Hough-Troutman, M. Smiglak, S. Griffin, W. M. Reichert, I. Mirska, J. Jodynis-Liebert, T. Adamska, J. Nawrot, M. Stasiewicz, R. D. Rogers, J. Pernak, New J. Chem. 2009, 33, 26.
| Crossref | GoogleScholarGoogle Scholar |
[9] S. M. Saadeh, Z. Yasseen, F. A. Sharif, H. M. A. Shawish, Ecotoxicol. Environ. Saf. 2009, 72, 1805.
| Crossref | GoogleScholarGoogle Scholar | 19201024PubMed |
[10] R. Rama, S. Meenakshi, J. Mol. Struct. 2020, 1204, 127490.
| Crossref | GoogleScholarGoogle Scholar |
[11] J. Cybulski, A. Wiśniewska, A. Kulig‐Adamiak, L. Lewicka, A. Cieniecka‐Rosłonkiewicz, K. Kita, A. Fojutowski, J. Nawrot, K. Materna, J. Pernak, Chem. – Eur. J. 2008, 14, 9305.
| Crossref | GoogleScholarGoogle Scholar | 18729115PubMed |
[12] K. Czerniak, F. Walkiewicz, New J. Chem. 2017, 41, 530.
| Crossref | GoogleScholarGoogle Scholar |
[13] K. Czerniak, Chemik 2016, 70, 521.
[14] N. Muhammad, M. I. Hossain, Z. Man, M. El-Harbawi, M. A. Bustam, Y. A. Noaman, N. B. Mohamed Alitheen, M. K. Ng, G. Hefter, C. Y. Yin, Chem. Eng. J. 2012, 57, 2191.
[15] K. Jumbri, N. S. F. M. Noh, N. A. Ahmad, M. B. A. Rahman, H. Ahmad, J. Adv. Res. Fluid Mech. Therm. Sci. 2018, 42, 16.
[16] R. Rama, R. Kumaresan, K. A. Venkatesan, M. P. Antony, P. R. Vasudeva Rao, Radiochim. Acta 2014, 102, 1009.
[17] D. Deng, Y. Jiang, X. Liu, New J. Chem. 2017, 41, 2090.
| Crossref | GoogleScholarGoogle Scholar |
[18] S. Magaldi, S. Mata-Essayag, C. H. De Capriles, C. Perez, M. T. Colella, C. Olaizola, Y. Ontiveros, Int. J. Infect. Dis. 2004, 8, 39.
| Crossref | GoogleScholarGoogle Scholar | 14690779PubMed |
[19] National Committee for Clinical Laboratory Standards (NCCLS), Methods for Antimicrobial Disk Susceptibility Testing of Bacteria Isolated from Aquatic Animals: A Report. NCClS document M42-R 2003 (NCCLS: Wayne, PA).
[20] National Committee for Clinical Laboratory Standards (NCCLS), Performance Standards for Antimicrobial Disk Susceptibility Tests 1999 (NCCLS: Wayne, PA).
[21] M. Ismail, M. Ibrar, Z. Iqbal, J. Hussain, H. Hussain, M. Ahmed, A. Ejaz, M. I. Choudhary, Rec. Nat. Prod. 2019, 3, 193.
[22] T. C. Dinis, V. M. Madeira, L. M. Almeida, Arch. Biochem. Biophys. 1994, 315, 161.
| Crossref | GoogleScholarGoogle Scholar | 7979394PubMed |
[23] R. J. Ruch, S. J. Cheng, J. E. Klaunig, Carcinogenesis 1989, 10, 1003.
| Crossref | GoogleScholarGoogle Scholar | 2470525PubMed |
[24] R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 1999, 26, 1231.
| Crossref | GoogleScholarGoogle Scholar | 10381194PubMed |
[25] N. A. Ahmad, K. Jumbri, A. Ramli, N. Ghani, H. Ahmad, Malays. J. Anal. Sci. 2019, 23, 383.