Synthesis of Atomically Thin CdTe Nanoplatelets by Using Polytelluride Tellurium Precursors
Fei Wang A , Shaghraf Javaid A , Wei Chen A , Aixiang Wang B C , Mark A. Buntine A and Guohua Jia A CA Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia.
B School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
C Corresponding authors. Email: wangaixiang1974@163.com; guohua.jia@curtin.edu.au
Australian Journal of Chemistry 74(3) 179-185 https://doi.org/10.1071/CH20174
Submitted: 31 May 2020 Accepted: 31 July 2020 Published: 4 September 2020
Abstract
Colloidal two-dimensional (2D) semiconductor nanocrystals are of great importance due to their remarkable optical and electronic properties. Herein, shape-controllable synthesis of 2D wurtzite CdTe nanoplatelets (NPLs) by simply tailoring the reactivity of a tellurium (Te) precursor is reported. Ribbon-, shield-, and bullet-like 2D CdTe NPLs were prepared by a stepwise conversion from CdTe magic-size nanoclusters (MSNCs) by using Te32–, Te22–, and Te2– polytellurides as the tellurium precursor, respectively. This work not only develops a synthetic strategy capable of synthesising wurtzite CdTe nanoplatelets with controlled shapes by tailoring the reactivity of tellurium precursors but also gives insights into the growth mechanisms of colloidal 2D semiconductor nanocrystals.
References
[1] T. Galle, M. Samadi Khoshkhoo, B. Martin-Garcia, C. Meerbach, V. Sayevich, A. Koitzsch, V. Lesnyak, A. Eychmüller, Chem. Mater. 2019, 31, 3803.| Crossref | GoogleScholarGoogle Scholar |
[2] M. Olutas, B. Guzelturk, Y. Kelestemur, A. Yeltik, S. Delikanli, H. V. Demir, ACS Nano 2015, 9, 5041.
| Crossref | GoogleScholarGoogle Scholar | 25950419PubMed |
[3] M. Li, M. Zhi, H. Zhu, W.-Y. Wu, Q.-H. Xu, M. H. Jhon, Y. Chan, Nat. Commun. 2015, 6, 8513.
| Crossref | GoogleScholarGoogle Scholar | 26419950PubMed |
[4] S. Christodoulou, J. I. Climente, J. Planelles, R. Brescia, M. Prato, B. Martin-Garcia, A. H. Khan, I. Moreels, Nano Lett. 2018, 18, 6248.
| Crossref | GoogleScholarGoogle Scholar | 30178676PubMed |
[5] Y. Chen, D. Chen, Z. Li, X. Peng, J. Am. Chem. Soc. 2017, 139, 10009.
| Crossref | GoogleScholarGoogle Scholar | 28665595PubMed |
[6] Y. Wang, Y. Zhou, Y. Zhang, W. E. Buhro, Inorg. Chem. 2015, 54, 1165.
| Crossref | GoogleScholarGoogle Scholar | 25602285PubMed |
[7] J. S. Son, J. H. Yu, S. G. Kwon, J. Lee, J. Joo, T. Hyeon, Adv. Mater. 2011, 23, 3214.
| Crossref | GoogleScholarGoogle Scholar | 21894625PubMed |
[8] Y. Wang, Y. Zhou, Y. Zhang, W. E. Buhro, Inorg. Chem. 2015, 54, 1165.
| Crossref | GoogleScholarGoogle Scholar | 25602285PubMed |
[9] Y. Zhou, R. Jiang, Y. Wang, H. W. Rohrs, N. P. Rath, W. E. Buhro, Inorg. Chem. 2019, 58, 1815.
| Crossref | GoogleScholarGoogle Scholar | 30644746PubMed |
[10] X. Peng, Adv. Mater. 2003, 15, 459.
| Crossref | GoogleScholarGoogle Scholar |
[11] M.-P. Pileni, Nat. Mater. 2003, 2, 145.
| Crossref | GoogleScholarGoogle Scholar | 12612669PubMed |
[12] J. Zhang, S. Jin, H. C. Fry, S. Peng, E. Shevchenko, G. P. Wiederrecht, T. Rajh, J. Am. Chem. Soc. 2011, 133, 15324.
| Crossref | GoogleScholarGoogle Scholar | 21899348PubMed |
[13] Y. Guo, S. R. Alvarado, J. D. Barclay, J. Vela, ACS Nano 2013, 7, 3616.
| Crossref | GoogleScholarGoogle Scholar | 23517277PubMed |
[14] Y. Zhai, M. Shim, Chem. Mater. 2017, 29, 2390.
| Crossref | GoogleScholarGoogle Scholar |
[15] Q. Lian, X. Zhu, X. Wang, W. Bai, J. Yang, Y. Zhang, R. Qi, R. Huang, W. Hu, X. Tang, J. Wang, J. Chu, Small 2019, 15, 1900236.
| Crossref | GoogleScholarGoogle Scholar | 30932339PubMed |
[16] B. Ren, J. Zhang, M. Liao, J. Huang, L. Sang, Y. Koide, L. Wang, Opt. Express 2019, 27, 8935.
| Crossref | GoogleScholarGoogle Scholar | 31052704PubMed |
[17] D. V. Talapin, S. Haubold, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, J. Phys. Chem. B 2001, 105, 2260.
| Crossref | GoogleScholarGoogle Scholar |
[18] D. Zhou, M. Lin, Z. Chen, H. Sun, H. Zhang, H. Sun, B. Yang, Chem. Mater. 2011, 23, 4857.
| Crossref | GoogleScholarGoogle Scholar |
[19] F. Jiang, J. Liu, Y. Li, L. Fan, Y. Ding, Y. Li, Adv. Funct. Mater. 2012, 22, 2402.
| Crossref | GoogleScholarGoogle Scholar |
[20] H. Sun, F. Wang, W. E. Buhro, ACS Nano 2018, 12, 12393.
| Crossref | GoogleScholarGoogle Scholar | 30452232PubMed |
[21] S. Pedetti, B. Nadal, E. Lhuillier, B. Mahler, C. Bouet, B. Abécassis, X. Xu, B. Dubertret, Chem. Mater. 2013, 25, 2455.
| Crossref | GoogleScholarGoogle Scholar |
[22] L. D. Schultz, W. H. Koehler, Inorg. Chem. 1987, 26, 1989.
| Crossref | GoogleScholarGoogle Scholar |
[23] J. L. McAfee, J. R. Andreatta, R. S. Sevcik, L. D. Schultz, J. Mol. Struct. 2012, 1022, 68.
| Crossref | GoogleScholarGoogle Scholar |
[24] W. Chen, A. Karton, T. Hussian, S. Javaid, F. Wang, Y. Pang, G. Jia, CrystEngComm 2019, 21, 2955.
| Crossref | GoogleScholarGoogle Scholar |
[25] S. Ithurria, M. D. Tessier, B. Mahler, R. P. Lobo, B. Dubertret, A. L. Efros, Nat. Mater. 2011, 10, 936.
| Crossref | GoogleScholarGoogle Scholar | 22019946PubMed |
[26] J. S. Son, K. Park, S. G. Kwon, J. Yang, M. K. Choi, J. Kim, J. H. Yu, J. Joo, T. Hyeon, Small 2012, 8, 2394.
| Crossref | GoogleScholarGoogle Scholar | 22641481PubMed |
[27] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, H. Zhang, Nat. Chem. 2013, 5, 263.
| Crossref | GoogleScholarGoogle Scholar | 23511414PubMed |
[28] S. Delikanli, G. Yu, A. Yeltik, S. Bose, T. Erdem, J. Yu, O. Erdem, M. Sharma, V. K. Sharma, U. Quliyeva, S. Shendre, C. Dang, D. H. Zhang, T. C. Sum, W. Fan, H. V. Demir, Adv. Funct. Mater. 2019, 29, 1901028.
| Crossref | GoogleScholarGoogle Scholar |
[29] X. Huang, Z. Zeng, H. Zhang, Chem. Soc. Rev. 2013, 42, 1934.
| Crossref | GoogleScholarGoogle Scholar | 23344899PubMed |
[30] R. B. Vasiliev, E. P. Lazareva, D. A. Karlova, A. V. Garshev, Y. Yao, T. Kuroda, A. M. Gaskov, K. Sakoda, Chem. Mater. 2018, 30, 1710.
| Crossref | GoogleScholarGoogle Scholar |
[31] F. Gerdes, C. Navío, B. H. Juárez, C. Klinke, Nano Lett. 2017, 17, 4165.
| Crossref | GoogleScholarGoogle Scholar | 28585822PubMed |
[32] J. S. Son, X. D. Wen, J. Joo, J. Chae, S. I. Baek, K. Park, J. H. Kim, K. An, J. H. Yu, S. G. Kwon, S. H. Choi, Z. Wang, Y. W. Kim, Y. Kuk, R. Hoffmann, T. Hyeon, Angew. Chem. Int. Ed. 2009, 48, 6861.
| Crossref | GoogleScholarGoogle Scholar |
[33] H. Park, H. Chung, W. Kim, Mater. Lett. 2013, 99, 172.
| Crossref | GoogleScholarGoogle Scholar |
[34] J. S. Son, X.-D. Wen, J. Joo, J. Chae, S.-i. Baek, K. Park, J. H. Kim, K. An, J. H. Yu, S. G. Kwon, S.-H. Choi, Z. Wang, Y.-W. Kim, Y. Kuk, R. Hoffmann, T. Hyeon, Angew. Chem. Int. Ed. 2009, 48, 6861.
| Crossref | GoogleScholarGoogle Scholar |
[35] D. A. Kurtina, A. V. Garshev, I. S. Vasil’eva, V. V. Shubin, A. M. Gaskov, R. B. Vasiliev, Chem. Mater. 2019, 31, 9652.
| Crossref | GoogleScholarGoogle Scholar |
[36] D. Chen, Y. Gao, Y. Chen, Y. Ren, X. Peng, Nano Lett. 2015, 15, 4477.
| Crossref | GoogleScholarGoogle Scholar | 26055510PubMed |
[37] J. Gong, Y. Hao, L. Li, S. Xue, P. Xie, X. Hou, H. Feng, X. Wei, Z. Liu, Z. Xu, J. Huang, J. Alloys Compd. 2019, 779, 962.
| Crossref | GoogleScholarGoogle Scholar |
[38] G. Zhang, S. Jiang, Y. Lin, W. Ren, H. Cai, Y. Wu, Q. Zhang, N. Pan, Y. Luo, X. Wang, J. Mater. Chem. A 2014, 2, 5675.
| Crossref | GoogleScholarGoogle Scholar |
[39] C. Gammer, C. Mangler, C. Rentenberger, H. P. Karnthaler, Scr. Mater. 2010, 63, 312.
| Crossref | GoogleScholarGoogle Scholar |