Leptanoine D, a New Quinoline Alkaloid from the Australian Tree Pitaviaster haplophyllus (Rutaceae)
Luke P. Robertson A B , Vivek Makwana C , Tanja M. Voser A B , Darren C. Holland A B and Anthony R. Carroll A B DA Environmental Futures Research Institute, Griffith University, Southport, Gold Coast, Qld 4222, Australia.
B Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Qld 4111, Australia.
C School of Pharmacy and Pharmacology, Griffith University, Southport, Gold Coast, Qld 4222, Australia.
D Corresponding author. Email: a.carroll@griffith.edu.au
Australian Journal of Chemistry 74(3) 173-178 https://doi.org/10.1071/CH20125
Submitted: 20 April 2020 Accepted: 28 July 2020 Published: 21 August 2020
Abstract
One new furoquinoline alkaloid, leptanoine D (1) and nine known alkaloids 2–10 were isolated from Pitaviaster haplophyllus. Leptanoine D (1) contains a typically unstable vinyl ether moiety and was structurally elucidated based on 2D NMR, (+)-HR-ESI-MS, and ECD data. The structures of the known furoquinoline alkaloids leptanoine A (11) and B (12) have also been revised. Compounds 1–10 were screened against three species of bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli), however they showed no activity at the highest dose tested (32 µg mL−1). The compounds were also evaluated for anti-proliferative action against PC-3 and WPMY-1 cells, with 7–9 displaying weak activity at 100 μM.
References
[1] J. J. Brophy, R. J. Goldsack, P. I. Forster, J. Essent. Oil Res. 2002, 14, 130.| Crossref | GoogleScholarGoogle Scholar |
[2] M. J. Bayly, G. D. Holmes, P. I. Forster, D. J. Cantrill, P. Y. Ladiges, PLoS One 2013, 8, e72493.
| Crossref | GoogleScholarGoogle Scholar | 23967311PubMed |
[3] F. N. Lahey, M. McCamish, Tetrahedron Lett. 1968, 9, 1525.
| Crossref | GoogleScholarGoogle Scholar |
[4] F. N. Lahey, M. McCamish, T. McEwan, Aust. J. Chem. 1969, 22, 447.
| Crossref | GoogleScholarGoogle Scholar |
[5] L. P. Robertson, S. Duffy, Y. Wang, D. Wang, V. M. Avery, A. R. Carroll, J. Nat. Prod. 2017, 80, 3211.
| Crossref | GoogleScholarGoogle Scholar | 29236492PubMed |
[6] L. P. Robertson, L. Lucantoni, S. Duffy, V. M. Avery, A. R. Carroll, J. Nat. Prod. 2019, 82, 1019.
| Crossref | GoogleScholarGoogle Scholar | 30865443PubMed |
[7] L. P. Robertson, L. Lucantoni, V. M. Avery, A. R. Carroll, Planta Med. 2020, 86, 19.
| Crossref | GoogleScholarGoogle Scholar | 31663109PubMed |
[8] L. P. Robertson, C. R. Hall, P. I. Forster, A. R. Carroll, Phytochemistry 2018, 152, 71.
| Crossref | GoogleScholarGoogle Scholar | 29734038PubMed |
[9] J. Pusset, J. L. Lopez, M. Pais, M. Al Neirabeyeh, J.-M. Veillon, Planta Med. 1991, 57, 153.
| Crossref | GoogleScholarGoogle Scholar | 17226139PubMed |
[10] J. Sichaem, A. Jirasirichote, K. Sapasuntikul, S. Khumkratok, P. Sawasdee, T. M. L. Do, S. Tip-Pyang, Fitoterapia 2014, 92, 270.
| Crossref | GoogleScholarGoogle Scholar | 24333260PubMed |
[11] See p. 180 in: E. Pretsch, P. Bühlmann, M. Badertscher, Structure Determination of Organic Compounds 2009 (Springer: Berlin).
[12] See p. 166 in: E. Pretsch, P. Bühlmann, M. Badertscher, Structure Determination of Organic Compounds 2009 (Springer: Berlin).
[13] M. Arata, T. Miura, K. Chiba, Org. Lett. 2007, 9, 4347.
| Crossref | GoogleScholarGoogle Scholar | 17867701PubMed |
[14] Z.-Y. Cheng, G.-D. Yao, R. Guo, X.-X. Huang, S.-J. Song, Bioorg. Med. Chem. Lett. 2017, 27, 597.
| Crossref | GoogleScholarGoogle Scholar | 27993516PubMed |
[15] T. Asai, S. Otsuki, H. Sakurai, K. Yamashita, T. Ozeki, Y. Oshima, Org. Lett. 2013, 15, 2058.
| Crossref | GoogleScholarGoogle Scholar | 23578108PubMed |
[16] F. Effenberger, Angew. Chem. Int. Ed. Engl. 1969, 8, 295.
| Crossref | GoogleScholarGoogle Scholar |
[17] J. Jones, A. J. Kresge, Can. J. Chem. 1993, 71, 38.
| Crossref | GoogleScholarGoogle Scholar |
[18] A. J. Kresge, H. J. Chen, J. Am. Chem. Soc. 1972, 94, 2818.
| Crossref | GoogleScholarGoogle Scholar |
[19] S.-R. Sheng, X.-L. Liu, X.-C. Wang, Q. Xin, C.-S. Song, Synthesis 2004, 2833.
| Crossref | GoogleScholarGoogle Scholar |
[20] D. Bergenthal, I. Mester, Z. Rozsa, J. Reisch, Phytochemistry 1979, 18, 161.
| Crossref | GoogleScholarGoogle Scholar |
[21] H. K. Wabo, P. Tane, J. D. Connolly, C. C. Okunji, B. M. Schuster, M. M. Iwu, Nat. Prod. Res. 2005, 19, 591.
| Crossref | GoogleScholarGoogle Scholar | 16010825PubMed |
[22] F. Tillequin, G. Baudouin, M. Koch, J. Nat. Prod. 1983, 46, 132.
| Crossref | GoogleScholarGoogle Scholar |
[23] F. Fish, I. A. Meshal, P. G. Waterman, Planta Med. 1976, 29, 310.
| Crossref | GoogleScholarGoogle Scholar | 959370PubMed |
[24] A. V. Robertson, Aust. J. Chem. 1963, 16, 451.
| Crossref | GoogleScholarGoogle Scholar |
[25] M. S. Appelhans, J. Wen, W. L. Wagner, Mol. Phylogenet. Evol. 2014, 79, 54.
| Crossref | GoogleScholarGoogle Scholar | 24971739PubMed |
[26] J. L. McCormick, T. C. McKee, J. H. Cardellina, M. R. Boyd, J. Nat. Prod. 1996, 59, 469.
| Crossref | GoogleScholarGoogle Scholar | 8778237PubMed |
[27] F. Tillequin, G. Baudouin, M. Ternoir, M. Koch, J. Pusset, T. Sevenet, J. Nat. Prod. 1982, 45, 486.
| Crossref | GoogleScholarGoogle Scholar |
[28] I. Komala, M. Rahmani, M. A. Sukari, H. B. Mohd Ismail, G. E. Cheng Lian, A. Rahmat, Nat. Prod. Res. 2006, 20, 355.
| Crossref | GoogleScholarGoogle Scholar | 16644530PubMed |
[29] R. J. Gell, G. K. Hughes, E. Ritchie, Aust. J. Chem. 1955, 8, 114.
[30] P. G. Waterman, Biochem. Syst. Ecol. 1975, 3, 149.
| Crossref | GoogleScholarGoogle Scholar |
[31] X. Xia, J.-G. Luo, R.-H. Liu, M.-H. Yang, L.-Y. Kong, Nat. Prod. Res. 2016, 30, 2154.
| Crossref | GoogleScholarGoogle Scholar | 26923350PubMed |
[32] P. H. Willoughby, M. J. Jansma, T. R. Hoye, Nat. Protoc. 2014, 9, 643.
| Crossref | GoogleScholarGoogle Scholar | 24556787PubMed |
[33] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
| Crossref | GoogleScholarGoogle Scholar | 16092826PubMed |
[34] T. Bruhn, A. Schaumlöffel, Y. Hemberger, G. Bringmann, Chirality 2013, 25, 243.
| Crossref | GoogleScholarGoogle Scholar | 23532998PubMed |
[35] S. Weeratunga, N.-J. Hu, A. Simon, A. Hofmann, BMC Bioinformatics 2012, 13, 201.
| Crossref | GoogleScholarGoogle Scholar | 22892030PubMed |
[36] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Revision A.03 2016 (Gaussian, Inc.: Wallingford, CT).
[37] S. D. Sarker, L. Nahar, Y. Kumarasamy, Methods 2007, 42, 321.
| Crossref | GoogleScholarGoogle Scholar | 17560319PubMed |
[38] NCCLS, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Tenth Edition. NCCLS document M07-A10. NCCLS, 950 West Valley Road, Suite 2500, Wayne, PA 19087 USA, 2017.
[39] R. D. Pickard, B. H. Spencer, A. J. McFarland, N. Bernaitis, A. K. Davey, A. V. Perkins, R. Chess-Williams, C. M. McDermott, A. Forbes, D. Christie, Naunyn Schmiedebergs Arch. Pharmacol. 2015, 388, 793.
| Crossref | GoogleScholarGoogle Scholar | 25708950PubMed |