Towards Peptide and Protein Recognition by Antibody Mimicking Synthetic Polymers – Background, State of the Art, and Future Outlook*
Ian A. Nicholls A B and Jesper G. Wiklander AA Bioorganic and Biophysical Chemistry Laboratory, Linnaeus Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
B Corresponding author. Email: ian.nicholls@lnu.se
After Ph.D. studies at the University of Melbourne (1989), Ian A. Nicholls pursued post-doctoral research at Cambridge and Lund universities and held a series of lecturing positions at Lund and Kalmar universities. In 2000, he was appointed to a chair in chemistry at the University of Kalmar (now Linnaeus University). His current research is focused on biomimetic recognition systems and their use for chemical catalysis, sensing, and therapeutic applications. |
Jesper Wiklander completed his M.Sc. in biomedical chemistry and Ph.D. in organic chemistry (2004) at the University of Kalmar (now Linnaeus University). His Ph.D. and subsequent research has been focused on establishing the mechanisms underlying molecularly imprinted polymer–ligand recognition behaviour and using molecularly imprinted materials in biosensing and biomaterials applications. |
Australian Journal of Chemistry 73(4) 300-306 https://doi.org/10.1071/CH20020
Submitted: 17 January 2020 Accepted: 20 February 2020 Published: 12 March 2020
Abstract
Antibody–peptide/protein interactions are instrumental for many processes in the pharmaceutical and biotechnology industries and as tools for biomedical and biochemical research. The recent development of molecularly imprinted polymer nanoparticles displaying antibody-like recognition of peptides and proteins offers the possibility for substituting antibodies with these robust materials for applications where the structural integrity and function of antibodies is compromised by temperature, pH, solvent, etc. The background to the development of this class of antibody-mimicking material and the state-of-the-art in their synthesis and application is presented in this review.
References
[1] P. Chames, M. Van Regenmortel, E. Weiss, D. Baty, Br. J. Pharmacol. 2009, 157, 220.| Crossref | GoogleScholarGoogle Scholar | 19459844PubMed |
[2] S. K. Vashist, J. H. T. Luong, in Handbook of Immunoassay Technologies (Eds S. K. Vashist, J. H. T. Luong) 2018, pp. 1–18 (Academic Press: Cambridge, MA).
[3] C. Zhang, E. Rodriguez, C. Bi, X. Zheng, D. Suresh, K. Suh, Z. Li, F. Elsebaei, D. S. Hage, Analyst 2018, 143, 374.
| Crossref | GoogleScholarGoogle Scholar | 29200216PubMed |
[4] Global Markets for Research Antibodies 2018 (BCC Research: Wellesley, MA).
[5] (a) G. P. Smith, Science 1985, 228, 1315.
| Crossref | GoogleScholarGoogle Scholar | 4001944PubMed |
(b) J. McCafferty, A. D. Griffiths, G. Winter, D. J. Chiswell, Nature 1990, 348, 552.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) C. Tuerk, L. Gold, Science 1990, 249, 505.
| Crossref | GoogleScholarGoogle Scholar | 2200121PubMed |
(b) A. D. Ellington, J. W. Szostak, Nature 1990, 346, 818.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Gold, J. Mol. Evol. 2015, 81, 140.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. C. Cox, A. D. Ellington, Bioorg. Med. Chem. 2001, 9, 2525.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) T. Schrader, G. Bitan, F.-G. Klärner, Chem. Commun. 2016, 52, 11318.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Rebek, D. Nemeth, J. Am. Chem. Soc. 1985, 107, 6738.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. Pant, A. D. Hamilton, J. Am. Chem. Soc. 1988, 110, 2002.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) C. Alexander, H. S. Andersson, L. I. Andersson, R. J. Ansell, N. Kirsch, I. A. Nicholls, J. O’Mahony, M. J. Whitcombe, J. Mol. Recognit. 2006, 19, 106.
| Crossref | GoogleScholarGoogle Scholar | 16395662PubMed |
(b) M. J. Whitcombe, N. Kirsch, I. A. Nicholls, J. Mol. Recognit. 2014, 27, 297.
| Crossref | GoogleScholarGoogle Scholar |
[9] M. Polyakov, Zhur. Fiz. Khim. 1931, 2, 799.
[10] G. Wulff, A. Sarhan, Angew. Chem. 1972, 84, 364.
| Crossref | GoogleScholarGoogle Scholar |
[11] M. Kempe, K. Mosbach, J. Chromatogr. A 1995, 691, 317.
| Crossref | GoogleScholarGoogle Scholar | 7894656PubMed |
[12] G. Vlatakis, L. I. Andersson, R. Muller, K. Mosbach, Nature 1993, 361, 645.
| Crossref | GoogleScholarGoogle Scholar | 8437624PubMed |
[13] K. Golker, I. A. Nicholls, Eur. Polym. J. 2016, 75, 423.
| Crossref | GoogleScholarGoogle Scholar |
[14] J. Svenson, I. A. Nicholls, Anal. Chim. Acta 2001, 435, 19.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) L. I. Andersson, R. Muller, G. Vlatakis, K. Mosbach, Proc. Natl. Acad. Sci. USA 1995, 92, 4788.
| Crossref | GoogleScholarGoogle Scholar | 7761401PubMed |
(b) O. Ramstrom, I. A. Nicholls, K. Mosbach, Tetrahedron Asymmetry 1994, 5, 649.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) S. Mallik, S. D. Plunkett, P. K. Dhal, R. D. Johnson, D. Pack, D. Shnek, F. H. Arnold, New J. Chem. 1994, 18, 299.
(b) M. Kempe, M. Glad, K. Mosbach, J. Mol. Recognit. 1995, 8, 35.
| Crossref | GoogleScholarGoogle Scholar |
[17] I. A. Nicholls, Chem. Lett. 1995, 24, 1035.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) B. Sellergren, M. Lepisto, K. Mosbach, J. Am. Chem. Soc. 1988, 110, 5853.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Svenson, J. G. Karlsson, I. A. Nicholls, J. Chromatogr. A 2004, 1024, 39.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. G. Karlsson, B. Karlsson, L. I. Andersson, I. A. Nicholls, Analyst 2004, 129, 456.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) F. Lanza, B. Sellergren, Anal. Chem. 1999, 71, 2092.
| Crossref | GoogleScholarGoogle Scholar | 21662744PubMed |
(b) T. Takeuchi, D. Fukuma, J. Matsui, Anal. Chem. 1999, 71, 285.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) S. A. Piletsky, K. Karim, E. V. Piletska, C. J. Day, K. W. Freebairn, C. Legge, A. P. F. Turner, Analyst 2001, 126, 1826.
| Crossref | GoogleScholarGoogle Scholar |
(b) I. Chianella, M. Lotierzo, S. A. Piletsky, I. E. Tothill, B. N. Chen, K. Karim, A. P. F. Turner, Anal. Chem. 2002, 74, 1288.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) B. C. G. Karlsson, J. O’Mahony, J. G. Karlsson, H. Bengtsson, L. A. Eriksson, I. A. Nicholls, J. Am. Chem. Soc. 2009, 131, 13297.
| Crossref | GoogleScholarGoogle Scholar |
(b) E. Schillinger, M. Moder, G. D. Olsson, I. A. Nicholls, B. Sellergren, Chem. – Eur. J. 2012, 18, 14773.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Cleland, G. D. Olsson, B. C. G. Karlsson, I. A. Nicholls, A. McCluskey, Org. Biomol. Chem. 2014, 12, 844.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) H. Q. Shi, W. B. Tsai, M. D. Garrison, S. Ferrari, B. D. Ratner, Nature 1999, 398, 593.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. M. D’Souza, C. Alexander, S. W. Carr, A. M. Waller, M. J. Whitcombe, E. N. Vulfson, Nature 1999, 398, 312.
| Crossref | GoogleScholarGoogle Scholar |
(c) I. A. Nicholls, J. P. Rosengren, Bioseparation 2001, 10, 301.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. P. Rosengren-Holmberg, J. Andersson, J. R. Smith, C. Alexander, M. R. Alexander, G. Tovar, K. N. Ekdahl, I. A. Nicholls, Biomater. Sci. 2015, 3, 1208.
| Crossref | GoogleScholarGoogle Scholar |
[23] (a) A. G. Mayes, K. Mosbach, Anal. Chem. 1996, 68, 3769.
| Crossref | GoogleScholarGoogle Scholar | 21619249PubMed |
(b) X. T. Shen, L. Ye, Macromolecules 2011, 44, 5631.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) K. Yoshimatsu, K. Reimhult, A. Krozer, K. Mosbach, K. Sode, L. Ye, Anal. Chim. Acta 2007, 584, 112.
| Crossref | GoogleScholarGoogle Scholar | 17386593PubMed |
(b) J. F. Wang, P. A. G. Cormack, D. C. Sherrington, E. Khoshdel, Angew. Chem. Int. Ed. 2003, 42, 5336.
| Crossref | GoogleScholarGoogle Scholar |
[25] (a) S. Suriyanarayanan, H. Nawaz, N. Ndizeye, I. A. Nicholls, Biosensors 2014, 4, 90.
| Crossref | GoogleScholarGoogle Scholar | 25587412PubMed |
(b) N. Ndizeye, S. Suriyanarayanan, I. A. Nicholls, Eur. Polym. J. 2018, 106, 223.
| Crossref | GoogleScholarGoogle Scholar |
[26] (a) E. Yilmaz, K. Haupt, K. Mosbach, Angew. Chem. Int. Ed. 2000, 39, 2115.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. M. E. Nilsson, S. Suriyanarayanan, S. Kathiravan, J. Yli-Kauhaluoma, T. Kotiaho, I. A. Nicholls, RSC Adv. 2019, 9, 33653.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Mandal, S. Suriyanarayanan, I. A. Nicholls, K. Ramanujam, J. Electrochem. Soc. 2018, 165, B669.
| Crossref | GoogleScholarGoogle Scholar |
[27] (a) H. Nishino, C. S. Huang, K. J. Shea, Angew. Chem. Int. Ed. 2006, 45, 2392.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. L. Urraca, C. S. A. Aureliano, E. Schillinger, H. Esselmann, J. Wiltfang, B. Sellergren, J. Am. Chem. Soc. 2011, 133, 9220.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Emgenbroich, C. Borrelli, S. Shinde, I. Lazraq, F. Vilela, A. J. Hall, J. Oxelbark, E. De Lorenzi, J. Courtois, A. Simanova, J. Verhage, K. Irgum, K. Karim, B. Sellergren, Chem. – Eur. J. 2008, 14, 9516.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. M. Titirici, B. Sellergren, Anal. Bioanal. Chem. 2004, 378, 1913.
| Crossref | GoogleScholarGoogle Scholar |
[28] D. Refaat, M. G. Aggour, A. A. Farghali, R. Mahajan, J. G. Wiklander, I. A. Nicholls, S. A. Piletsky, Int. J. Mol. Sci. 2019, 20, 6304.
| Crossref | GoogleScholarGoogle Scholar |
[29] J. Liao, Y. Wang, S. Hjertén, Chromatographia 1996, 42, 259.
| Crossref | GoogleScholarGoogle Scholar |
[30] M. Kempe, Lett. Pept. Sci. 2000, 7, 27.
[31] J. Berglund, C. Lindbladh, K. Mosbach, I. A. Nicholls, Anal. Commun. 1998, 35, 3.
| Crossref | GoogleScholarGoogle Scholar |
[32] N. W. Turner, X. Liu, S. A. Piletsky, V. Hlady, D. W. Britt, Biomacromolecules 2007, 8, 2781.
| Crossref | GoogleScholarGoogle Scholar | 17665947PubMed |
[33] Y. Hoshino, T. Kodama, Y. Okahata, K. J. Shea, J. Am. Chem. Soc. 2008, 130, 15242.
| Crossref | GoogleScholarGoogle Scholar | 18942788PubMed |
[34] Y. Hoshino, H. Koide, T. Urakami, H. Kanazawa, T. Kodama, N. Oku, K. J. Shea, J. Am. Chem. Soc. 2010, 132, 6644.
| Crossref | GoogleScholarGoogle Scholar | 20420394PubMed |
[35] (a) A. Okishima, H. Koide, Y. Hoshino, H. Egami, Y. Hamashima, N. Oku, T. Asai, Biomacromolecules 2019, 20, 1644.
| Crossref | GoogleScholarGoogle Scholar | 30848887PubMed |
(b) Z. Zeng, Y. Hoshino, A. Rodriguez, H. Yoo, K. J. Shea, ACS Nano 2010, 4, 199.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. Hoare, D. Sivakumaran, C. F. Stefanescu, M. W. Lawlor, D. S. Kohane, Acta Biomater. 2012, 8, 1450.
| Crossref | GoogleScholarGoogle Scholar |
[36] F. Canfarotta, A. Poma, A. Guerreiro, S. Piletsky, Nat. Protoc. 2016, 11, 443.
| Crossref | GoogleScholarGoogle Scholar | 26866789PubMed |
[37] A. Poma, A. Guerreiro, M. J. Whitcombe, E. V. Piletska, A. P. F. Turner, S. A. Piletsky, Adv. Funct. Mater. 2013, 23, 2821.
| Crossref | GoogleScholarGoogle Scholar | 26869870PubMed |
[38] Y. Garcia, K. Smolinska-Kempisty, E. Pereira, E. Piletska, S. Piletsky, Anal. Methods 2017, 9, 4592.
| Crossref | GoogleScholarGoogle Scholar |
[39] S. S. Piletsky, A. E. Cass, E. V. Piletska, J. Czulak, S. A. Piletsky, ChemNanoMat 2018, 4, 1214.
| Crossref | GoogleScholarGoogle Scholar |
[40] C. Esen, J. Czulak, T. Cowen, E. Piletska, S. A. Piletsky, Anal. Chem. 2019, 91, 958.
| Crossref | GoogleScholarGoogle Scholar | 30518208PubMed |
[41] S.-P. Tang, F. Canfarotta, K. Smolinska-Kempisty, E. Piletska, A. Guerreiro, S. Piletsky, Anal. Methods 2017, 9, 2853.
| Crossref | GoogleScholarGoogle Scholar |
[42] I. Chianella, A. Guerreiro, E. Moczko, J. S. Caygill, E. V. Piletska, I. M. P. de Vargas Sansalvador, M. J. Whitcombe, S. A. Piletsky, Anal. Chem. 2013, 85, 8462.
| Crossref | GoogleScholarGoogle Scholar | 23947402PubMed |
[43] (a) J. Ashley, Y. Shukor, R. D’Aurelio, L. Trinh, T. L. Rodgers, J. Temblay, M. Pleasants, I. E. Tothill, ACS Sens. 2018, 3, 418.
| Crossref | GoogleScholarGoogle Scholar | 29333852PubMed |
(b) Z. Altintas, M. Gittens, A. Guerreiro, K.-A. Thompson, J. Walker, S. Piletsky, I. E. Tothill, Anal. Chem. 2015, 87, 6801.
| Crossref | GoogleScholarGoogle Scholar |
[44] O. I. Parisi, C. Morelli, F. Puoci, C. Saturnino, A. Caruso, D. Sisci, G. E. Trombino, N. Picci, M. S. Sinicropi, J. Mater. Chem. B Mater. Biol. Med. 2014, 2, 6619.
| Crossref | GoogleScholarGoogle Scholar |
[45] F. A. Ishkuh, M. Javanbakht, M. Esfandyari-Manesh, R. Dinarvand, F. Atyabi, J. Mater. Sci. 2014, 49, 6343.
| Crossref | GoogleScholarGoogle Scholar |
[46] M. Curcio, G. Cirillo, O. I. Parisi, F. Iemma, N. Picci, F. Puoci, J. Funct. Biomater. 2012, 3, 269.
| Crossref | GoogleScholarGoogle Scholar | 24955531PubMed |
[47] A. Suksuwan, L. Lomlim, T. Rungrotmongkol, T. Nakpheng, F. L. Dickert, R. Suedee, J. Appl. Polym. Sci. 2015, 132, 41930.
[48] P. K. Paul, A. Treetong, R. Suedee, Acta Pharm. 2017, 67, 149.
| Crossref | GoogleScholarGoogle Scholar | 28590908PubMed |
[49] K. Smolinska-Kempisty, A. Guerreiro, J. Czulak, S. Piletsky, Sens. Actuators B Chem. 2019, 301, 126967.
| Crossref | GoogleScholarGoogle Scholar |
[50] P. X. Medina Rangel, E. Moroni, F. Merlier, L. A. Gheber, R. Vago, B. Tse Sum Bui, K. Haupt, Angew. Chem. Int. Ed. 2020, 59, 2816.
| Crossref | GoogleScholarGoogle Scholar |
[51] E. Moczko, A. Guerreiro, C. Caceres, E. Piletska, B. Sellergren, S. A. Piletsky, J. Chromatogr. B 2019, 1124, 1.
| Crossref | GoogleScholarGoogle Scholar |
[52] R. Mahajan, M. Rouhi, S. Shinde, T. Bedwell, A. Incel, L. Mavliutova, S. Piletsky, I. A. Nicholls, B. Sellergren, Angew. Chem. Int. Ed. 2019, 58, 727.
| Crossref | GoogleScholarGoogle Scholar |
[53] (a) C. I. Lin, A. K. Joseph, C. K. Chang, Y. Der Lee, Biosens. Bioelectron. 2004, 20, 127.
| Crossref | GoogleScholarGoogle Scholar | 15142585PubMed |
(b) R. Liu, G. Guan, S. Wang, Z. Zhang, Analyst 2011, 136, 184.
| Crossref | GoogleScholarGoogle Scholar |
[54] S. Kunath, M. Panagiotopoulou, J. Maximilien, N. Marchyk, J. Sänger, K. Haupt, Adv. Healthc. Mater. 2015, 4, 1322.
| Crossref | GoogleScholarGoogle Scholar | 25880918PubMed |
[55] Y. Dong, W. Li, Z. Gu, R. Xing, Y. Ma, Q. Zhang, Z. Liu, Angew. Chem. Int. Ed. 2019, 58, 10621.
| Crossref | GoogleScholarGoogle Scholar |
[56] (a) J. B. Ball, D. J. Craik, P. F. Alewood, S. Morrison, P. R. Andrews, I. A. Nicholls, Aust. J. Chem. 1989, 42, 2171.
| Crossref | GoogleScholarGoogle Scholar |
(b) I. A. Nicholls, P. F. Alewood, R. I. Brinkworth, S. F. Morrison, P. R. Andrews, J. Chem. Res. Synop. 1993, 408.
(c) I. A. Nicholls, S. F. Morrison, R. I. Brinkworth, P. F. Alewood, P. R. Andrews, Life Sci. 1993, 53, PL343.
| Crossref | GoogleScholarGoogle Scholar |
(d) I. A. Nicholls, P. F. Alewood, Bioorg. Chem. 1994, 22, 300.
| Crossref | GoogleScholarGoogle Scholar |
(e) I. A. Nicholls, D. J. Craik, P. F. Alewood, Biochem. Biophys. Res. Commun. 1994, 205, 98.
| Crossref | GoogleScholarGoogle Scholar |