Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Predicting Octanol–Water Partition Coefficients of Fluorinated Drug-Like Molecules: A Combined Experimental and Theoretical Study

Ying Min Wu A , Yuvixza Lizarme Salas A , Yun Cheuk Leung A , Luke Hunter A B and Junming Ho https://orcid.org/0000-0001-9381-924X A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.

B Corresponding authors. Email: l.hunter@unsw.edu.au; junming.ho@unsw.edu.au

Australian Journal of Chemistry 73(8) 677-685 https://doi.org/10.1071/CH19648
Submitted: 13 December 2019  Accepted: 6 February 2020   Published: 14 May 2020

Journal Compilation © CSIRO 2020 Open Access CC BY-NC

Abstract

In this paper, a dataset of 11 fluorinated compounds containing a variety of functional groups (amides, esters, indoles, and ethers) as well as mono, gem-difluoro, erythro-difluoro, and threo-difluoro patterns were synthesised and their octanol–water partition coefficients (log P) were measured using a shake-flask method. The resulting data was used to assess the performance of several popular empirical fragment-based methods as well as quantum chemical implicit solvent models (SMD and SM12). Overall, the empirical miLOGP, ALOGPS, and ALOGP methods performed the best with a mean absolute deviation (MAD) of ~0.25 log units, while the best performing implicit solvent model SMD has a slightly higher MAD of 0.36 log units. Based on the present work and previous studies, the miLOGP and ALOGP empirical methods are recommended for fast and moderately accurate prediction of log P for neutral organic solutes.


References

[1]  X. Liu, B. Testa, A. Fahr, Pharm. Res. 2011, 28, 962.
         | Crossref | GoogleScholarGoogle Scholar | 21052797PubMed |

[2]  C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Adv. Drug Deliv. Rev. 1997, 23, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  M. H. M. Klose, S. Theiner, H. P. Varbanov, D. Hoefer, V. Pichler, M. Galanski, S. M. Meier-Menches, B. K. Keppler, Inorganics 2018, 6, 130.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  C. Liang, J. Qiao, H. Lian, J. Chromatogr. A 2017, 1528, 25.
         | Crossref | GoogleScholarGoogle Scholar | 29103597PubMed |

[5]  S. K. Poole, C. F. Poole, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003, 797, 3.
         | Crossref | GoogleScholarGoogle Scholar | 14630140PubMed |

[6]  C. F. Poole, A. D. Gunatilleka, S. K. Poole, Adv. Chromatogr. 2000, 40, 159.
         | 10740741PubMed |

[7]  E. Baka, J. E. A. Comer, K. Takács-Novák, J. Pharm. Biomed. Anal. 2008, 46, 335.
         | Crossref | GoogleScholarGoogle Scholar | 18055153PubMed |

[8]  J. Alsenz, M. Kansy, Adv. Drug Deliv. Rev. 2007, 59, 546.
         | Crossref | GoogleScholarGoogle Scholar | 17604872PubMed |

[9]  R. Mannhold, G. I. Poda, C. Ostermann, I. V. Tetko, J. Pharm. Sci. 2009, 98, 861.
         | Crossref | GoogleScholarGoogle Scholar | 18683876PubMed |

[10]  Molinspiration Cheminformatics, Calculation of Molecular Properties and Bioactivity Score. Available at https://www.molinspiration.com/ (accessed 5 July 2019).

[11]  A. Daina, O. Michielin, V. Zoete, Sci. Rep. 2017, 7, 42717.
         | Crossref | GoogleScholarGoogle Scholar | 28256516PubMed |

[12]  Swiss Institute of Bioinformatics, SwissADME. Available at http://www.swissadme.ch/ (accessed 5 October 2019).

[13]  VCCLAB, Virtual Computational Chemistry Laboratory. Available at http://www.vcclab.org/ (accessed 19 October 2019).

[14]  C. J. Cramer, D. G. Truhlar, Chem. Rev. 1999, 99, 2161.
         | Crossref | GoogleScholarGoogle Scholar | 11849023PubMed |

[15]  J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
         | Crossref | GoogleScholarGoogle Scholar | 16092826PubMed |

[16]  B. Chen, J. I. Siepmann, J. Am. Chem. Soc. 2000, 122, 6464.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  N. M. Garrido, A. J. Queimada, M. Jorge, E. A. Macedo, I. G. Economou, J. Chem. Theory Comput. 2009, 5, 2436.
         | Crossref | GoogleScholarGoogle Scholar | 26616624PubMed |

[18]  M. Soroush Barhaghi, C. Luyet, J. J. Potoff, Mol. Phys. 2019, 117, 3827.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  R. E. Skyner, J. L. McDonagh, C. R. Groom, T. Van Mourik, J. B. O. Mitchell, Phys. Chem. Chem. Phys. 2015, 17, 6174.
         | Crossref | GoogleScholarGoogle Scholar | 25660403PubMed |

[20]  V. Kundi, J. Ho, J. Phys. Chem. B 2019, 123, 6810.
         | Crossref | GoogleScholarGoogle Scholar | 31343883PubMed |

[21]  D. van der Spoel, S. Manzetti, H. Zhang, A. Klamt, ACS Omega 2019, 4, 13772.
         | Crossref | GoogleScholarGoogle Scholar | 31497695PubMed |

[22]  M. Işık, D. Levorse, D. L. Mobley, T. Rhodes, J. D. Chodera, bioRxiv 2019, 757393.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  K. L. Kirk, Org. Process Res. Dev. 2008, 12, 305.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881.
         | Crossref | GoogleScholarGoogle Scholar | 17901324PubMed |

[25]  E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315.
         | Crossref | GoogleScholarGoogle Scholar | 26200936PubMed |

[26]  D. O’Hagan, R. J. Young, Angew. Chem. 2016, 55, 3858.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  K. Müller, Chim. Int. J. Chem. 2014, 68, 356.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  Y. L. Salas, Stereoselective Fluorination as a Conformational Tool in a Series of Structurally Related Bioactive Molecules 2019, Ph.D. thesis, UNSW Sydney, Australia.

[29]  B. Linclau, Z. Wang, G. Compain, V. Paumelle, C. Q. Fontenelle, N. Wells, A. Weymouth-Wilson, Angew. Chem. Int. Ed. 2016, 55, 674.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  C. J. Cramer, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 760.
         | Crossref | GoogleScholarGoogle Scholar | 18512970PubMed |

[31]  A. Klamt, B. Mennucci, J. Tomasi, V. Barone, C. Curutchet, M. Orozco, F. J. Luque, Acc. Chem. Res. 2009, 42, 489.
         | Crossref | GoogleScholarGoogle Scholar | 19222200PubMed |

[32]  B. Chen, J. Ilja Siepmann, J. Phys. Chem. B 2006, 110, 3555.
         | Crossref | GoogleScholarGoogle Scholar | 16494411PubMed |

[33]  S. A. Best, K. M. Merz, C. H. Reynolds, J. Phys. Chem. B 1999, 103, 714.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  A. Klamt, G. Schüürmann, J. Chem. Soc., Perkin Trans. 2 1993, 799.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  A. Klamt, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  J. R. Frost, C. M. Pearson, T. N. Snaddon, R. A. Booth, R. M. Turner, J. Gold, D. M. Shaw, M. J. Gaunt, S. V. Ley, A. Callipeltosides, Chem. – Eur. J. 2015, 21, 13261.
         | Crossref | GoogleScholarGoogle Scholar | 26230615PubMed |

[37]  M. Marigo, D. Fielenbach, A. Brauntonn, A. Kjærsgaard, K. A. Jorgensen, Angew. Chem. Int. Ed. 2005, 44, 3703.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  A. Daina, O. Michielin, V. Zoete, J. Chem. Inf. Model. 2014, 54, 3284.
         | Crossref | GoogleScholarGoogle Scholar | 25382374PubMed |

[39]  T. Cheng, Y. Zhao, X. Li, F. Lin, Y. Xu, X. Zhang, Y. Li, R. Wang, L. Lai, J. Chem. Inf. Model. 2007, 47, 2140.
         | Crossref | GoogleScholarGoogle Scholar | 17985865PubMed |

[40]  I. V. Tetko, V. Y. Tanchuk, J. Chem. Inf. Comput. Sci. 2002, 42, 1136.
         | Crossref | GoogleScholarGoogle Scholar | 12377001PubMed |

[41]  A. K. Ghose, V. N. Viswanadhan, J. J. Wendoloski, J. Phys. Chem. A 1998, 102, 3762.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  MarvinSketch 18.16.0 2018 (ChemAxon: Boston, MA).

[43]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01 2016 (Gaussian, Inc., Wallingford CT).

[44]  Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, et al. Mol. Phys. 2015, 113, 184.
         | Crossref | GoogleScholarGoogle Scholar |