Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Effects of Hydrogen Bonding on the Rotational Dynamics of Water-Like Molecules in Liquids: Insights from Molecular Dynamics Simulations

W. A. Monika Madhavi A B , Samantha Weerasinghe https://orcid.org/0000-0003-4807-5784 C and Konstantin I. Momot https://orcid.org/0000-0002-5695-153X A D
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Physics, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, Qld 4001, Australia.

B Department of Physics, University of Colombo, Colombo 03, Sri Lanka.

C Department of Chemistry, University of Colombo, Colombo 03, Sri Lanka.

D Corresponding author. Email: k.momot@qut.edu.au

Australian Journal of Chemistry 73(8) 734-742 https://doi.org/10.1071/CH19537
Submitted: 21 October 2019  Accepted: 27 April 2020   Published: 25 May 2020

Abstract

Rotational motion of molecules plays an important role in determining NMR spin relaxation properties of liquids. The textbook theory of NMR spin relaxation predominantly uses the assumption that the reorientational dynamics of molecules is described by a continuous time rotational diffusion random walk with a single rotational diffusion coefficient. Previously we and others have shown that reorientation of water molecules on the timescales of picoseconds is not consistent with the Debye rotational-diffusion model. In particular, multiple timescales of molecular reorientation were observed in liquid water. This was attributed to the hydrogen bonding network in water and the consequent presence of collective rearrangements of the molecular network. In order to better understand the origins of the complex reorientational behaviour of water molecules, we carried out molecular dynamics (MD) simulations of a liquid that has a similar molecular geometry to water but does not form hydrogen bonds: hydrogen sulfide. These simulations were carried out at T = 208 K and p = 1 atm (~5 K below the boiling point). Ensemble-averaged Legendre polynomial functions of hydrogen sulfide exhibited a Gaussian decay on the sub-picosecond timescale but, unlike water, did not exhibit oscillatory behaviour. We attribute these differences to hydrogen sulfide’s absence of hydrogen bonding.


References

[1]  L. Nilsson, B. Halle, Proc. Natl. Acad. Sci. USA 2005, 102, 13867.
         | Crossref | GoogleScholarGoogle Scholar | 16162674PubMed |

[2]  J. S. Hansen, A. Kisliuk, A. P. Sokolov, C. Gainaru, Phys. Rev. Lett. 2016, 116, 237601.
         | Crossref | GoogleScholarGoogle Scholar | 27341258PubMed |

[3]  S. H. Koenig, Biophys. J. 1995, 69, 593.
         | Crossref | GoogleScholarGoogle Scholar | 8527674PubMed |

[4]  D. Laage, G. Stirnemann, J. T. Hynes, Sci. China Phys. Mech. Astron. 2010, 53, 1068.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  C. Ronne, L. Thrane, P. O. Astrand, A. Wallqvist, K. V. Mikkelsen, S. R. Keiding, J. Chem. Phys. 1997, 107, 5319.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  C. Calero, J. Martí, E. Guàrdia, J. Phys. Chem. B 2015, 119, 1966.
         | Crossref | GoogleScholarGoogle Scholar | 25584483PubMed |

[7]  P. M. Singer, D. Asthagiri, Z. Chen, A. V. Parambathu, G. J. Hirasaki, W. G. Chapman, J. Chem. Phys. 2018, 148, 164507.
         | Crossref | GoogleScholarGoogle Scholar | 29865803PubMed |

[8]  A. Abragam, The Principles of Nuclear Magnetism 1962 (Clarendon Press: Oxford).

[9]  I. M. Svishchev, P. G. Kusalik, J. Chem. Soc., Faraday Trans. 1994, 90, 1405.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  M. G. Mazza, N. Giovambattista, H. E. Stanley, F. W. Starr, Phys. Rev. E 2007, 76, 031203.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  J. Ropp, C. Lawrence, T. C. Farrar, J. L. Skinner, J. Am. Chem. Soc. 2001, 123, 8047.
         | Crossref | GoogleScholarGoogle Scholar | 11506561PubMed |

[12]  L. E. Bove, S. Klotz, T. Strässle, M. Koza, J. Teixeira, A. M. Saitta, Phys. Rev. Lett. 2013, 111, 185901.
         | Crossref | GoogleScholarGoogle Scholar | 24237539PubMed |

[13]  J. Qvist, C. Mattea, E. P. Sunde, B. Halle, J. Chem. Phys. 2012, 136, 204505.
         | Crossref | GoogleScholarGoogle Scholar | 22667569PubMed |

[14]  N. Matubayasi, N. Nakao, M. Nakahara, J. Chem. Phys. 2001, 114, 4107.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  P. P. Jose, D. Chakrabarti, B. Bagchi, Phys. Rev. E 2006, 73, 031705.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  W. A. M. Madhavi, S. Weerasinghe, K. I. Momot, J. Phys. Chem. B 2017, 121, 10893.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  D. Laage, G. Stirnemann, F. Sterpone, R. Rey, J. T. Hynes, Annu. Rev. Phys. Chem. 2011, 62, 395.
         | Crossref | GoogleScholarGoogle Scholar | 21219140PubMed |

[18]  D. Laage, J. T. Hynes, Science 2006, 311, 832.
         | Crossref | GoogleScholarGoogle Scholar | 16439623PubMed |

[19]  D. Laage, J. T. Hynes, J. Phys. Chem. B 2008, 112, 14230.
         | Crossref | GoogleScholarGoogle Scholar | 18942871PubMed |

[20]  A. Luzar, D. Chandler, Nature 1996, 379, 55.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  J. Teixeira, A. Luzar, S. Longeville, J. Phys. Condens. Matter 2006, 18, S2353.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  W. A. M. Madhavi, S. Weerasinghe, G. D. Fullerton, K. I. Momot, J. Phys. Chem. B 2019, 123, 4901.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  E. N. Ivanov, Sov. Phys. J. 1964, 18, 1041.

[24]  D. Laage, J. Phys. Chem. B 2009, 113, 2684.
         | Crossref | GoogleScholarGoogle Scholar | 19708107PubMed |

[25]  J. Petersen, K. B. Møller, R. Rey, J. T. Hynes, J. Phys. Chem. B 2013, 117, 4541.
         | Crossref | GoogleScholarGoogle Scholar | 23131075PubMed |

[26]  C. J. Burnham, N. J. English, J. Chem. Phys. 2016, 144, 051101.
         | Crossref | GoogleScholarGoogle Scholar | 27131553PubMed |

[27]  I. M. Svishchev, P. G. Kusalik, J. Chem. Soc., Faraday Trans. 1994, 90, 1405.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  D. Bertolini, A. Tani, Mol. Phys. 1992, 75, 1047.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  D. E. Moilanen, E. E. Fenn, Y. S. Lin, J. L. Skinner, B. Bagchi, M. D. Fayer, Proc. Natl. Acad. Sci. USA 2008, 105, 5295.
         | Crossref | GoogleScholarGoogle Scholar | 18381817PubMed |

[30]  M. Bouachir, M. Perrot, J. Leicknam, Mol. Phys. 1987, 62, 679.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  P. Friant-Michel, J.-F. Wax, N. Meyer, H. Xu, C. Millot, J. Phys. Chem. B 2019, 123, 10025.
         | Crossref | GoogleScholarGoogle Scholar | 31725300PubMed |

[32]  M. Albertí, A. Amat, A. Aguilar, F. Pirani, J. Phys. Chem. A 2016, 120, 4749.
         | Crossref | GoogleScholarGoogle Scholar | 26835966PubMed |

[33]  S. Riahi, C. N. Rowley, J. Phys. Chem. B 2013, 117, 5222.
         | Crossref | GoogleScholarGoogle Scholar | 23566029PubMed |

[34]  C. Nieto-Draghi, A. D. MacKie, J. B. Avalos, J. Chem. Phys. 2005, 123, 014505.
         | Crossref | GoogleScholarGoogle Scholar | 16035853PubMed |

[35]  G. Kamath, N. Lubna, J. J. Potoff, J. Chem. Phys. 2005, 123, 124505.
         | Crossref | GoogleScholarGoogle Scholar | 16392496PubMed |

[36]  C. Andreani, C. Petrillo, D. Rocca, Europhys. Lett. 1988, 5, 145.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  C. Andreani, V. Merlo, M. A. Ricci, A. K. Soper, Mol. Phys. 1991, 73, 407.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  A. G. Cubitt, C. Henderson, L. A. K. Staveley, I. M. A. Fonseca, A. G. M. Ferreira, L. Q. Lobo, J. Chem. Thermodyn. 1987, 19, 703.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  H. J. Neuburg, J. F. Atherley, L. G. Walker, Girdler-Sulfide Process Physical Properties 1977 (Chemical Engineering Branch, Chalk River Nuclear Laboratories: Chalk River, Ontario).

[40]  F. Perrin, J. Phys. Radium 1934, 5, 497.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  B. J. Berne, R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics 1976 (John Wiley: New York, NY).

[42]  D. A. McQuarrie, Statistical Mechanics 1976 (Harper and Row: New York, NY).

[43]  R. Rey, J. T. Hynes, Phys. Chem. Chem. Phys. 2012, 14, 6332.
         | Crossref | GoogleScholarGoogle Scholar | 22402668PubMed |

[44]  A. G. S. Pierre, W. A. Steele, Phys. Rev. 1969, 184, 172.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  T. E. Eagles, R. E. D. McClung, J. Chem. Phys. 1974, 61, 4070.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  V. F. Sears, Can. J. Phys. 1967, 45, 237.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  R. G. Gordon, J. Chem. Phys. 1965, 43, 1307.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  M. F. Crawford, H. L. Welsh, J. H. Harrold, Can. J. Phys. 1952, 30, 81.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  R. G. Gordon, J. Chem. Phys. 1966, 44, 1830.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  R. G. Gordon, J. Chem. Phys. 1965, 42, 3658.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  W. J. Xie, Y. I. Yang, Y. Q. Gao, J. Chem. Phys. 2015, 143, 224504.
         | Crossref | GoogleScholarGoogle Scholar | 26671387PubMed |

[52]  P. M. Singer, D. Asthagiri, W. G. Chapman, G. J. Hirasaki, J. Chem. Phys. 2018, 148, 204504.
         | Crossref | GoogleScholarGoogle Scholar | 29865803PubMed |