Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

DNA Hairpin Adsorption on Gold Surfaces: Temperature and Salt Concentration Effects on Structure

Kurt L. M. Drew A and Tiffany R. Walsh https://orcid.org/0000-0002-0233-9484 A B
+ Author Affiliations
- Author Affiliations

A Institute for Frontier Materials, Deakin University, Geelong, Vic. 3216, Australia.

B Corresponding author. Email: tiffany.walsh@deakin.edu.au

Australian Journal of Chemistry 73(10) 987-1000 https://doi.org/10.1071/CH19533
Submitted: 18 October 2019  Accepted: 9 January 2020   Published: 7 May 2020

Abstract

The structure and dynamics of a DNA hairpin is investigated for its potential use in molecular sensing, as well as the suitability of the DNA hairpin as a possible temperature-sensitive actuating nano-spacing agent. At present, little is known regarding the molecular-scale details of the structural change of DNA aptamers in response to an external stimulus such as heat, when adsorbed to sensor-relevant substrates such as gold or graphene. An in-depth understanding at the atomistic level is required to probe the transition of aptamers from an ordered state to a disordered state when adsorbed on a surface, but is challenging to obtain from experiments alone. Molecular simulation offers a complementary approach. Here we use molecular dynamics simulations of an exemplar DNA hairpin in aqueous solution and adsorbed onto Au(111), at a range of temperatures and salt concentrations. Our findings provide new insights into the structural changes that occur and predict the conformational preferences that are likely to be present in an experimental system.


References

[1]  C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, Nature 1996, 382, 607.
         | Crossref | GoogleScholarGoogle Scholar | 8757129PubMed |

[2]  M. M. Maye, M. T. Kumara, D. Nykypanchuk, W. B. Sherman, O. Gang, Nat. Nanotechnol. 2010, 5, 116.
         | Crossref | GoogleScholarGoogle Scholar | 20023646PubMed |

[3]  J. A. Fan, Y. He, K. Bao, C. H. Wu, J. M. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, F. Capasso, Nano Lett. 2011, 11, 4859.
         | Crossref | GoogleScholarGoogle Scholar | 22007607PubMed |

[4]  E. Auyeung, J. I. Cutler, R. J. Macfarlane, M. R. Jones, J. S. Wu, G. Liu, K. Zhang, K. D. Osberg, C. A. Mirkin, Nat. Nanotechnol. 2012, 7, 24.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  A. J. Senesi, D. J. Eichelsdoerfer, R. J. Macfarlane, M. R. Jones, E. Auyeung, B. Lee, C. A. Mirkin, Angew. Chem. Int. Ed. 2013, 52, 6624.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  R. J. Macfarlane, M. R. Jones, B. Lee, E. Auyeung, C. A. Mirkin, Science 2013, 341, 1222.
         | Crossref | GoogleScholarGoogle Scholar | 23970559PubMed |

[7]  K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones, C. Zhang, A. J. Senesi, B. Lee, G. C. Schatz, C. A. Mirkin, Adv. Mater. 2014, 26, 653.
         | Crossref | GoogleScholarGoogle Scholar | 24166990PubMed |

[8]  A. T. Jonstrup, J. Fredsoe, A. H. Andersen, Sensors 2013, 13, 5937.
         | Crossref | GoogleScholarGoogle Scholar | 23666126PubMed |

[9]  H. X. Li, L. Rothberg, Proc. Natl. Acad. Sci. USA 2004, 101, 14036.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  H. X. Li, L. J. Rothberg, Anal. Chem. 2004, 76, 5414.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  J. Wang, L. H. Wang, X. F. Liu, Z. Q. Liang, S. P. Song, W. X. Li, G. X. Li, C. H. Fan, Adv. Mater. 2007, 19, 3943.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  R. R. Breaker, Curr. Opin. Chem. Biol. 1997, 1, 26.
         | Crossref | GoogleScholarGoogle Scholar | 9667831PubMed |

[13]  P. W. K. Rothemund, Nature 2006, 440, 297.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, U. F. Keyser, Nat. Commun. 2014, 5, 3448.
         | Crossref | GoogleScholarGoogle Scholar | 24622339PubMed |

[15]  D. Li, S. P. Song, C. H. Fan, Acc. Chem. Res. 2010, 43, 631.
         | Crossref | GoogleScholarGoogle Scholar | 20222738PubMed |

[16]  L. Wang, L. Fang, S. F. Liu, Analyst 2015, 140, 5877.
         | Crossref | GoogleScholarGoogle Scholar | 26215159PubMed |

[17]  R. Stoltenburg, C. Reinemann, B. Strehlitz, Biomol. Eng. 2007, 24, 381.
         | Crossref | GoogleScholarGoogle Scholar | 17627883PubMed |

[18]  R. Wilson, Chem. Soc. Rev. 2008, 37, 2028.
         | Crossref | GoogleScholarGoogle Scholar | 18762845PubMed |

[19]  P. M. Vallone, T. M. Paner, J. Hilario, M. J. Lane, B. D. Faldasz, A. S. Benight, Biopolymers 1999, 50, 425.
         | Crossref | GoogleScholarGoogle Scholar | 10423551PubMed |

[20]  J. Y. Jung, A. Van Orden, J. Am. Chem. Soc. 2006, 128, 1240.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  E. Stellwagen, J. M. Muse, N. C. Stellwagen, Biochemistry 2011, 50, 3084.
         | Crossref | GoogleScholarGoogle Scholar | 21410141PubMed |

[22]  H. R. Ma, C. Z. Wan, A. G. Wu, A. H. Zewail, Proc. Natl. Acad. Sci. USA 2007, 104, 712.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  K. Y. Wong, B. M. Pettitt, Biophys. J. 2008, 95, 5618.
         | Crossref | GoogleScholarGoogle Scholar | 18952784PubMed |

[24]  X. Zhang, R. M. Wadkins, Biophys. J. 2009, 96, 1884.
         | Crossref | GoogleScholarGoogle Scholar | 19254547PubMed |

[25]  M. M. Senior, R. A. Jones, K. J. Breslauer, Proc. Natl. Acad. Sci. USA 1988, 85, 6242.
         | Crossref | GoogleScholarGoogle Scholar | 3413094PubMed |

[26]  V. P. Antao, I. Tinoco, Nucleic Acids Res. 1992, 20, 819.
         | Crossref | GoogleScholarGoogle Scholar | 1371866PubMed |

[27]  K. M. Guckian, B. A. Schweitzer, R. X. F. Ren, C. J. Sheils, P. L. Paris, D. C. Tahmassebi, E. T. Kool, J. Am. Chem. Soc. 1996, 118, 8182.
         | Crossref | GoogleScholarGoogle Scholar | 20882117PubMed |

[28]  O. F. A. Larsen, I. H. M. van Stokkum, B. Gobets, R. van Grondelle, H. van Amerongen, Biophys. J. 2001, 81, 1115.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  J. Jung, R. Ihly, E. Scott, M. Yu, A. Van Orden, J. Phys. Chem. B 2008, 112, 127.
         | Crossref | GoogleScholarGoogle Scholar | 18076153PubMed |

[30]  B. Hernandez, V. Baumruk, N. Leulliot, C. Gouyette, T. Huynh-Dinh, M. Ghomi, J. Mol. Struct. 2003, 651–653, 67.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  M. Baouendi, J. A. H. Cognet, C. S. M. Ferreira, S. Missailidis, J. Coutant, M. Piotto, E. Hantz, C. H. du Penhoat, FEBS J. 2012, 279, 479.
         | Crossref | GoogleScholarGoogle Scholar | 22129448PubMed |

[32]  J. Smiatek, C. Chen, D. S. Liu, A. Heuer, J. Phys. Chem. B 2011, 115, 13788.
         | Crossref | GoogleScholarGoogle Scholar | 21995652PubMed |

[33]  K. Qamhieh, K. Y. Wong, G. C. Lynch, B. M. Pettitt, Int. J. Numer. Anal. Model. 2009, 6, 474.
         | 19802357PubMed |

[34]  A. Perez, M. Orozco, Angew. Chem. Int. Ed. 2010, 49, 4805.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  M. Zgarbova, M. Otyepka, J. Sponer, F. Lankas, P. Jurecka, J. Chem. Theory Comput. 2014, 10, 3177.
         | Crossref | GoogleScholarGoogle Scholar | 26588288PubMed |

[36]  K. Siegmund, M. Hariharan, F. D. Lewis, J. Phys. Chem. B 2011, 115, 3740.
         | Crossref | GoogleScholarGoogle Scholar | 21410196PubMed |

[37]  S. Kannan, M. Zacharias, Biophys. J. 2007, 93, 3218.
         | Crossref | GoogleScholarGoogle Scholar | 17660316PubMed |

[38]  S. Kannan, M. Zacharias, Nucleic Acids Res. 2011, 39, 8271.
         | Crossref | GoogleScholarGoogle Scholar | 21724608PubMed |

[39]  P. Auffinger, E. Westhof, J. Mol. Biol. 2001, 305, 1057.
         | Crossref | GoogleScholarGoogle Scholar | 11162114PubMed |

[40]  G. M. Wang, W. C. Sandberg, Nanotechnology 2007, 18, 135702.
         | Crossref | GoogleScholarGoogle Scholar | 21730387PubMed |

[41]  O. S. Lee, G. C. Schatz, J. Phys. Chem. C 2009, 113, 2316.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  A. Singh, H. Eksiri, Y. G. Yingling, J. Polym. Sci., Part B: Polym. Phys. 2011, 49, 1563.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  V. A. Ngo, R. K. Kalia, A. Nakano, P. Vashishta, J. Phys. Chem. C 2012, 116, 19579.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  G. Doni, M. D. N. Ngavouka, A. Barducci, P. Parisse, A. De Vita, G. Scoles, L. Casalis, G. M. Pavan, Nanoscale 2013, 5, 9988.
         | Crossref | GoogleScholarGoogle Scholar | 23996015PubMed |

[45]  O. S. Lee, V. Y. Cho, G. C. Schatz, J. Phys. Chem. B 2012, 116, 7000.
         | Crossref | GoogleScholarGoogle Scholar | 22424267PubMed |

[46]  O. S. Lee, G. C. Schatz, J. Phys. Chem. C 2009, 113, 15941.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  W. Phanchai, U. Srikulwong, A. Chompoosor, C. Sakonsinsiri, T. Puangmali, Langmuir 2018, 34, 6161.
         | Crossref | GoogleScholarGoogle Scholar | 29724100PubMed |

[48]  Z. E. Hughes, T. R. Walsh, ACS Sens. 2017, 2, 1602.
         | Crossref | GoogleScholarGoogle Scholar | 29063764PubMed |

[49]  P. K. Samanta, G. Periyasamy, A. K. Manna, S. K. Pati, J. Mater. Chem. 2012, 22, 6774.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  X. K. Jiang, J. Gao, T. Huynh, P. Huai, C. H. Fan, R. H. Zhou, B. Song, J. Chem. Phys. 2014, 140, 234102.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  W. L. Jorgensen, J. Tiradorives, J. Am. Chem. Soc. 1988, 110, 1657.
         | Crossref | GoogleScholarGoogle Scholar | 27557051PubMed |

[52]  P. Mark, L. Nilsson, J. Phys. Chem. A 2001, 105, 9954.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  G. Portella, M. Orozco, Angew. Chem. Int. Ed. 2010, 49, 7673.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  H. Long, A. Kudlay, G. C. Schatz, J. Phys. Chem. B 2006, 110, 2918.
         | Crossref | GoogleScholarGoogle Scholar | 16471902PubMed |

[55]  B. W. Liu, E. Y. Kelly, J. W. Liu, Langmuir 2014, 30, 13228.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  M. Rosa, S. Corni, R. Di Feice, J. Chem. Theory Comput. 2014, 10, 1707.
         | Crossref | GoogleScholarGoogle Scholar | 26580379PubMed |

[57]  Z. E. Hughes, G. Wei, K. L. M. Drew, L. Colombi Ciacchi, T. R. Walsh, Langmuir 2017, 33, 10193.
         | Crossref | GoogleScholarGoogle Scholar | 28885033PubMed |

[58]  T. R. Walsh, Acc. Chem. Res. 2017, 50, 1617.
         | Crossref | GoogleScholarGoogle Scholar | 28665581PubMed |

[59]  N. M. Bedford, Z. E. Hughes, Z. H. Tang, Y. Li, B. D. Briggs, Y. Ren, M. T. Swihart, V. G. Petkov, R. R. Naik, M. R. Knecht, T. R. Walsh, J. Am. Chem. Soc. 2016, 138, 540.
         | Crossref | GoogleScholarGoogle Scholar | 26679562PubMed |

[60]  Z. E. Hughes, R. Kochandra, T. R. Walsh, Langmuir 2017, 33, 3742.
         | Crossref | GoogleScholarGoogle Scholar | 28358489PubMed |

[61]  Z. E. Hughes, M. A. Nguyen, Y. Li, M. T. Swihart, T. R. Walsh, M. R. Knecht, Nanoscale 2017, 9, 421.
         | Crossref | GoogleScholarGoogle Scholar | 27929192PubMed |

[62]  L. B. Wright, P. M. Rodger, S. Corni, T. R. Walsh, J. Chem. Theory Comput. 2013, 9, 1616.
         | Crossref | GoogleScholarGoogle Scholar | 26587623PubMed |

[63]  B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 2008, 4, 435.
         | Crossref | GoogleScholarGoogle Scholar | 26620784PubMed |

[64]  S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, E. Lindahl, Bioinformatics 2013, 29, 845.
         | Crossref | GoogleScholarGoogle Scholar | 23407358PubMed |

[65]  M. J. P. vanDongen, M. M. W. Mooren, E. F. A. Willems, G. A. vanderMarel, J. H. vanBoom, S. S. Wijmenga, C. W. Hilbers, Nucleic Acids Res. 1997, 25, 1537.

[66]  G. H. Zheng, X. J. Lu, W. K. Olson, Nucleic Acids Res. 2009, 37, W240.
         | Crossref | GoogleScholarGoogle Scholar |

[67]  W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. Model. 1996, 14, 33.
         | Crossref | GoogleScholarGoogle Scholar |

[68]  A. D. MacKerell, N. Banavali, N. Foloppe, Biopolymers 2001, 56, 257.
         | Crossref | GoogleScholarGoogle Scholar |

[69]  A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, M. Karplus, J. Phys. Chem. B 1998, 102, 3586.
         | Crossref | GoogleScholarGoogle Scholar | 24889800PubMed |

[70]  F. Iori, R. Di Felice, E. Molinari, S. Corni, J. Comput. Chem. 2009, 30, 1465.
         | Crossref | GoogleScholarGoogle Scholar | 19037859PubMed |

[71]  F. Iori, S. Corni, J. Comput. Chem. 2008, 29, 1656.
         | Crossref | GoogleScholarGoogle Scholar | 18351601PubMed |

[72]  D. M. York, T. A. Darden, L. G. Pedersen, J. Chem. Phys. 1993, 99, 8345.
         | Crossref | GoogleScholarGoogle Scholar |

[73]  S. Nose, Mol. Phys. 1984, 52, 255.
         | Crossref | GoogleScholarGoogle Scholar |

[74]  W. G. Hoover, Phys. Rev. A 1985, 31, 1695.
         | Crossref | GoogleScholarGoogle Scholar |

[75]  R. W. Hockney, S. P. Goel, J. W. Eastwood, J. Comput. Phys. 1974, 14, 148.
         | Crossref | GoogleScholarGoogle Scholar |

[76]  M. Parrinello, A. Rahman, J. Appl. Phys. 1981, 52, 7182.
         | Crossref | GoogleScholarGoogle Scholar |