Improved Access to Linear Tetrameric Hydroxamic Acids with Potential as Radiochemical Ligands for Zirconium(iv)-89 PET Imaging
Christopher J. M. Brown A , Michael P. Gotsbacher A and Rachel Codd A BA School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
B Corresponding author. Email: rachel.codd@sydney.edu.au
Australian Journal of Chemistry 73(10) 969-978 https://doi.org/10.1071/CH19518
Submitted: 15 October 2019 Accepted: 2 December 2019 Published: 27 February 2020
Journal Compilation © CSIRO 2020 Open Access CC BY-NC-ND
Abstract
Two new linear tetrameric hydroxamic acid ligands (3 and 4) have been prepared as potential radioligands for immunological ZrIV-89 positron emission tomography (PET) imaging. The ligands were prepared by conjugating endo-hydroxamic acid amino carboxylic acid (endo-HXA) monomers 5-[(5-aminopentyl)(hydroxy)amino]-5-oxopentanoic acid (PPH) or 2-(2-((2-(2-aminoethoxy)ethyl)(hydroxy)amino)-2-oxoethoxy)acetic acid (PPHNOCO) to trimeric desferrioxamine B (DFOB). The properties of DFOB-PPH (3) and DFOB-PPHNOCO (4) were compared with the first-in-class ligand DFO* (named DFOB-PBH (2) in the present work) and DFOB (1). In the initial phase of an FeIII : ZrIV competition experiment, 1 preferentially formed FeIII-1, with ZrIV-1 becoming dominant after 48 h. Tetrameric 2–4 selected ZrIV above FeIII at all times. The initial rates of formation of ZrIV-3 and ZrIV-4 were greater than ZrIV -2, which could reflect a better match between the ZrIV ionic radius and the increased volume of the coordination sphere provided by 3 and 4. In the presence of excess EDTA, ZrIV-4 dissociated more rapidly than ZrIV-2 and ZrIV-3, which indicated that any beneficial increase in water solubility conferred by the presence of ether oxygen atoms in 4 could be offset by a reduction in complex stability. Outer-sphere solvation of the ether oxygen atoms in ZrIV-4 may increase the entropic contribution to the dissociation of the complex. The rank order of the initial rate of ZrIV complexation in the presence of equimolar FeIII (highest to lowest) 4 > 3 > 2 >>> 1 together with the rate of the dissociation of the ZrIV complex (lowest to highest) 2 ≈ 3 > 4 >>> 1 identifies 3 as a ligand with potential value for immunological ZrIV-89 PET imaging.
References
[1] R. Codd, Coord. Chem. Rev. 2008, 252, 1387.| Crossref | GoogleScholarGoogle Scholar |
[2] C. J. Marmion, D. Griffith, K. B. Nolan, Eur. J. Inorg. Chem. 2004, 3003.
| Crossref | GoogleScholarGoogle Scholar |
[3] A. Stintzi, K. N. Raymond, in Molecular and Cellular Iron Transport (Ed. D. M. Templeton) 2002, pp. 273–319 (Marcel Dekker, Inc.: New York, NY).
[4] A.-M. Albrecht-Gary, A. L. Crumbliss, in Metal Ions in Biological Systems (Ed. A. Sigel, H. Sigel) 1998, pp. 239–327 (Marcel Dekker, Inc.: New York, NY).
[5] A. Butler, Nat. Struct. Biol. 2003, 10, 240.
| Crossref | GoogleScholarGoogle Scholar | 12660718PubMed |
[6] R. C. Hider, X. Kong, Nat. Prod. Rep. 2010, 27, 637.
| Crossref | GoogleScholarGoogle Scholar | 20376388PubMed |
[7] I. J. Schalk, M. Hannauer, A. Braud, Environ. Microbiol. 2011, 13, 2844.
| Crossref | GoogleScholarGoogle Scholar | 21883800PubMed |
[8] W. Neumann, M. Sassone-Corsi, M. Raffatellu, E. M. Nolan, J. Am. Chem. Soc. 2018, 140, 5193.
| Crossref | GoogleScholarGoogle Scholar | 29578687PubMed |
[9] D. J. Raines, J. E. Clarke, E. V. Blagova, E. J. Dodson, K. S. Wilson, A.-K. Duhme-Klair, Nat. Catal. 2018, 1, 680.
| Crossref | GoogleScholarGoogle Scholar |
[10] E. W. Price, C. Orvig, Chem. Soc. Rev. 2014, 43, 260.
| Crossref | GoogleScholarGoogle Scholar | 24173525PubMed |
[11] P. J. Blower, Dalton Trans. 2015, 4819.
| Crossref | GoogleScholarGoogle Scholar | 25406520PubMed |
[12] T. W. Price, J. Greenman, G. J. Stasiuk, Dalton Trans. 2016, 15702.
| Crossref | GoogleScholarGoogle Scholar | 26865360PubMed |
[13] C. J. Adams, J. J. Wilson, E. Boros, Mol. Pharm. 2017, 14, 2831.
| Crossref | GoogleScholarGoogle Scholar | 28665620PubMed |
[14] R. Codd, T. Richardson-Sanchez, T. J. Telfer, M. P. Gotsbacher, ACS Chem. Biol. 2018, 13, 11.
| Crossref | GoogleScholarGoogle Scholar | 29182270PubMed |
[15] G. Fischer, U. Seibold, R. Schirrmacher, B. Wängler, C. Wängler, Molecules 2013, 18, 6469.
| Crossref | GoogleScholarGoogle Scholar | 23736785PubMed |
[16] S. Heskamp, R. Raavé, O. C. Boerman, M. Rijpkema, V. Goncalves, F. Denat, Bioconjug. Chem. 2017, 28, 2211.
| Crossref | GoogleScholarGoogle Scholar | 28767228PubMed |
[17] J. R. Dilworth, S. I. Pascu, Chem. Soc. Rev. 2018, 47, 2554.
| Crossref | GoogleScholarGoogle Scholar | 29557435PubMed |
[18] N. B. Bhatt, D. N. Pandya, S. Rideout-Danner, H. D. Gage, F. C. Marini, T. J. Wadas, Dalton Trans. 2018, 13214.
| Crossref | GoogleScholarGoogle Scholar | 30178793PubMed |
[19] J. P. Holland, Y. Sheh, J. S. Lewis, Nucl. Med. Biol. 2009, 36, 729.
| Crossref | GoogleScholarGoogle Scholar | 19720285PubMed |
[20] J. P. Holland, V. Divilov, N. H. Bander, P. M. Smith-Jones, S. M. Larson, J. S. Lewis, J. Nucl. Med. 2010, 51, 1293.
| Crossref | GoogleScholarGoogle Scholar | 20660376PubMed |
[21] N. Pandit-Taskar, J. A. O’Donoghue, J. C. Durack, S. K. Lyashchenko, S. M. Cheal, V. Beylergil, R. A. Lefkowitz, J. A. Carrasquillo, D. F. Martinez, A. M. Fung, S. B. Solomon, M. Goenen, G. Heller, M. Loda, D. M. Nanus, S. T. Tagawa, J. L. Feldman, J. R. Osborne, J. S. Lewis, V. E. Reuter, W. A. Weber, N. H. Bander, H. I. Scher, S. M. Larson, M. J. Morris, Clin. Cancer Res. 2015, 21, 5277.
| Crossref | GoogleScholarGoogle Scholar | 26175541PubMed |
[22] P. K. E. Börjesson, Y. W. S. Jauw, R. Boellaard, R. de Bree, E. F. I. Comans, J. C. Roos, J. A. Castelijns, M. J. W. D. Vosjan, J. A. Kummer, C. R. Leemans, A. A. Lammertsma, G. A. M. S. van Dongen, Clin. Cancer Res. 2006, 12, 2133.
| Crossref | GoogleScholarGoogle Scholar |
[23] E. C. Dijkers, T. H. Oude Munnink, J. G. Kosterink, A. H. Brouwers, P. J. Jager, J. R. de Jong, G. A. van Dongen, C. P. Schroeder, M. N. Lub-de Hooge, E. G. de Vries, Clin. Pharmacol. Ther. 2010, 87, 586.
| Crossref | GoogleScholarGoogle Scholar | 20357763PubMed |
[24] F. Guérard, Y.-S. Lee, R. Tripier, L. P. Szajek, J. R. Deschamps, M. W. Brechbiel, Chem. Commun. 2013, 1002.
| Crossref | GoogleScholarGoogle Scholar |
[25] J. P. Holland, N. Vasdev, Dalton Trans. 2014, 9872.
| Crossref | GoogleScholarGoogle Scholar | 24722728PubMed |
[26] L. R. Perk, G. W. M. Visser, M. J. W. D. Vosjan, M. Stigter-van Walsum, B. M. Tijink, C. R. Leemans, G. A. M. S. van Dongen, J. Nucl. Med. 2005, 46, 1898.
| 16269605PubMed |
[27] M. Patra, A. Bauman, C. Mari, C. A. Fischer, O. Blacque, D. Haussinger, G. Gasser, T. L. Mindt, Chem. Commun. 2014, 11523.
| Crossref | GoogleScholarGoogle Scholar |
[28] W. Tieu, T. Lifa, A. Katsifis, R. Codd, Inorg. Chem. 2017, 56, 3719.
| Crossref | GoogleScholarGoogle Scholar | 28245117PubMed |
[29] T. Richardson-Sanchez, W. Tieu, M. P. Gotsbacher, T. J. Telfer, R. Codd, Org. Biomol. Chem. 2017, 15, 5719.
| Crossref | GoogleScholarGoogle Scholar | 28650492PubMed |
[30] M. Briand, M. L. Aulsebrook, T. L. Mindt, G. Gasser, Dalton Trans. 2017, 16387.
| Crossref | GoogleScholarGoogle Scholar | 29130082PubMed |
[31] S. E. Rudd, P. Roselt, C. Cullinane, R. J. Hicks, P. S. Donnelly, Chem. Commun. 2016, 11889.
| Crossref | GoogleScholarGoogle Scholar |
[32] C. J. M. Brown, M. P. Gotsbacher, J. P. Holland, R. Codd, Inorg. Chem. 2019, 58, 13591.
| Crossref | GoogleScholarGoogle Scholar |
[33] K. M. Ledyard, A. Butler, J. Biol. Inorg. Chem. 1997, 2, 93.
| Crossref | GoogleScholarGoogle Scholar |
[34] Z. Hou, C. J. Sunderland, T. Nishio, K. N. Raymond, J. Am. Chem. Soc. 1996, 118, 5148.
| Crossref | GoogleScholarGoogle Scholar |
[35] Z. Hou, K. N. Raymond, B. O’Sullivan, T. W. Esker, T. Nishio, Inorg. Chem. 1998, 37, 6630.
| Crossref | GoogleScholarGoogle Scholar | 11670794PubMed |
[36] R. Codd, C. Z. Soe, A. A. H. Pakchung, A. Sresutharsan, C. J. M. Brown, W. Tieu, J. Biol. Inorg. Chem. 2018, 23, 969.
| Crossref | GoogleScholarGoogle Scholar | 29946977PubMed |
[37] G. Anderegg, F. L’Eplattenier, G. Schwarzenbach, Helv. Chim. Acta 1963, 46, 1400.
| Crossref | GoogleScholarGoogle Scholar |
[38] A. Evers, R. D. Hancock, A. E. Martell, R. J. Motekaitis, Inorg. Chem. 1989, 28, 2189.
| Crossref | GoogleScholarGoogle Scholar |
[39] S. Dhungana, P. S. White, A. L. Crumbliss, J. Biol. Inorg. Chem. 2001, 6, 810.
| Crossref | GoogleScholarGoogle Scholar | 11713688PubMed |
[40] Y. Toporivska, E. Gumienna-Kontecka, J. Inorg. Biochem. 2019, 198, 110753.
| 31229836PubMed |
[41] J. P. Holland, Inorg. Chem. 2020, 59, 2070.
| 31940188PubMed |
[42] R. K. Shervedani, Z. Akrami, F. Yaghoobi, M. Torabi, H. Sabzyan, J. Phys. Chem. C 2019, 123, 29932.
| Crossref | GoogleScholarGoogle Scholar |
[43] T. J. Telfer, T. Richardson-Sanchez, M. P. Gotsbacher, K. P. Nolan, W. Tieu, R. Codd, Biometals 2019, 32, 395.
| Crossref | GoogleScholarGoogle Scholar | 30701380PubMed |
[44] E. W. Price, B. M. Zeglis, J. F. Cawthray, J. S. Lewis, M. J. Adam, C. Orvig, Inorg. Chem. 2014, 53, 10412.
| Crossref | GoogleScholarGoogle Scholar | 25192223PubMed |