Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Theoretical Investigation of Main-Group Element Hydride Insertion into Phosphorus-Heterocyclic Carbenes (PHCs)

Khalidah H. M. Al Furaiji A B , Andrew Molino A , Jason L. Dutton A and David J. D. Wilson https://orcid.org/0000-0002-0007-4486 A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University Melbourne, Vic. 3086, Australia.

B Department of Chemistry, College of Science, Mustansiriyah University, Baghdad 10052, Iraq.

C Corresponding author. Email: david.wilson@latrobe.edu.au

Australian Journal of Chemistry 73(8) 787-793 https://doi.org/10.1071/CH19487
Submitted: 30 September 2019  Accepted: 21 November 2019   Published: 20 April 2020

Abstract

Initial reports of ring expansion reactions (RER) of N-heterocyclic carbenes (NHCs) with main-group element hydrides have led to several synthetic and theoretical investigations, which include reports of insertion by Be, B, Al, Si, and Zn hydrides. The RERs generally lead to insertion of the heteroatom into the endocyclic C–N bond with formation of an expanded heterocyclic ring. Following the recent isolation of a P-heterocyclic carbene (PHC), here we report results from a computational study (RI-SCS-MP2/def2-TZVP//M06–2X/def2-TZVP) of RERs with a series of PHCs for the ring-insertion of silicon (SiH4, SiH2Ph2) and boron (BH3, BH2NMe2) hydrides. In order to explore the roles of both electronic and steric effects on PHCs and their reactivity, a series of P-substituent PHCR (R = H, Me, Ph, and bulky Ar groups) were investigated. Bulky R groups serve to maximise ring planarity and the σ-donating capability of the PHC. For RER, the PHC analogues exhibit facile initial hydride transfer from the main-group hydrides to the carbene carbon, with barriers that are substantially lower than with NHCs. However, the full ring insertion mechanisms for PHCs are, in general, kinetically unfavourable due to a large barrier associated with the ring-expansion step. While bulky P-substituents maximise heterocycle planarity towards that of NHCs, the RER reactivity with bulky PHCs does not reflect that of an NHC.


References

[1]  A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  F. Hering, J. Nitsch, U. Paul, A. Steffen, F. M. Bickelhaupt, U. Radius, Chem. Sci. 2015, 6, 1426.
         | Crossref | GoogleScholarGoogle Scholar | 29560231PubMed |

[3]  Y. Wang, G. H. Robinson, Dalton Trans. 2012, 41, 337.
         | Crossref | GoogleScholarGoogle Scholar | 21904737PubMed |

[4]  J. E. Walley, G. Breiner, G. Wang, D. A. Dickie, A. Molino, J. L. Dutton, D. J. D. Wilson, R. J. Gilliard, Chem. Commun. 2019, 55, 1967.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  S. Jamali, D. Milić, R. Kia, Z. Mazloomi, H. Abdolahi, Dalton Trans. 2011, 40, 9362.
         | Crossref | GoogleScholarGoogle Scholar | 21660338PubMed |

[6]  M. J. Lopez-Gomez, D. Martin, G. Bertrand, Chem. Commun. 2013, 49, 4483.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, Science 2008, 321, 1069.
         | Crossref | GoogleScholarGoogle Scholar | 18719279PubMed |

[8]  Y. Wang, G. H. Robinson, Inorg. Chem. 2011, 50, 12326.
         | Crossref | GoogleScholarGoogle Scholar | 21634365PubMed |

[9]  D. J. D. Wilson, J. L. Dutton, Chem. – Eur. J. 2013, 19, 13626.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  G. D. Frey, V. Lavallo, B. Donnadieu, W. W. Schoeller, G. Bertrand, Science 2007, 316, 439.
         | Crossref | GoogleScholarGoogle Scholar | 17446400PubMed |

[11]  A. J. M. Miller, J. E. Bercaw, Chem. Commun. 2010, 1709.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  S. Pietsch, U. Paul, I. A. Cade, M. J. Ingleson, U. Radius, T. B. Marder, Chem. – Eur. J. 2015, 21, 9018.
         | Crossref | GoogleScholarGoogle Scholar | 25960171PubMed |

[13]  A. W. Waltman, T. Ritter, R. H. Grubbs, Organometallics 2006, 25, 4238.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  M. Arrowsmith, M. S. Hill, G. Kociok-Köhn, D. J. MacDougall, M. F. Mahon, Angew. Chem. Int. Ed. 2012, 51, 2098.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  S. M. I. Al-Rafia, R. McDonald, M. J. Ferguson, E. Rivard, Chem. – Eur. J. 2012, 18, 13810.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  D. Franz, S. Inoue, Chem. Asian J. 2014, 9, 2083.
         | Crossref | GoogleScholarGoogle Scholar | 24938679PubMed |

[17]  D. Schmidt, J. H. J. Berthel, S. Pietsch, U. Radius, Angew. Chem. Int. Ed. 2012, 51, 8881.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  H. Schneider, A. Hock, R. Bertermann, U. Radius, Chem. – Eur. J. 2017, 23, 12387.
         | Crossref | GoogleScholarGoogle Scholar | 28603878PubMed |

[19]  M. D. Anker, A. L. Colebatch, K. J. Iversen, D. J. Wilson, J. L. Dutton, L. García, M. S. Hill, D. J. Liptrot, M. F. Mahon, Organometallics 2017, 36, 1173.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  K. J. Iversen, D. J. Wilson, J. L. Dutton, Dalton Trans. 2015, 44, 3318.
         | Crossref | GoogleScholarGoogle Scholar | 25597453PubMed |

[21]  K. J. Iversen, D. J. D. Wilson, J. L. Dutton, Dalton Trans. 2013, 42, 11035.
         | Crossref | GoogleScholarGoogle Scholar | 23804120PubMed |

[22]  K. J. Iversen, D. J. D. Wilson, J. L. Dutton, Organometallics 2013, 32, 6209.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  K. J. Iversen, D. J. D. Wilson, J. L. Dutton, Dalton Trans. 2014, 43, 12820.
         | Crossref | GoogleScholarGoogle Scholar | 24763715PubMed |

[24]  K. J. Iversen, J. L. Dutton, D. J. D. Wilson, Chem. Asian J. 2017, 12, 1499.
         | Crossref | GoogleScholarGoogle Scholar | 28266142PubMed |

[25]  L. García, K. H. M. Al Furaiji, D. J. D. Wilson, J. L. Dutton, M. S. Hill, M. F. Mahon, Dalton Trans. 2017, 46, 12015.
         | Crossref | GoogleScholarGoogle Scholar | 28849839PubMed |

[26]  J. E. Walley, A. D. Obi, G. Breiner, G. Wang, D. A. Dickie, A. Molino, J. L. Dutton, D. J. D. Wilson, R. J. Gilliard, Inorg. Chem. 2019, 58, 11118.
         | Crossref | GoogleScholarGoogle Scholar | 31380626PubMed |

[27]  K. H. M. Al Furaiji, K. J. Iversen, J. L. Dutton, D. J. D. Wilson, Chem. Asian J. 2018, 13, 3745.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  M. R. Momeni, E. Rivard, A. Brown, Organometallics 2013, 32, 6201.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  M.-D. Su, Inorg. Chem. 2014, 53, 5080.
         | Crossref | GoogleScholarGoogle Scholar | 24786838PubMed |

[30]  R. Fang, L. Yang, Q. Wang, Organometallics 2014, 33, 53.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  M. Melaimi, M. Soleilhavoup, G. Bertrand, Angew. Chem. Int. Ed. 2010, 49, 8810.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  V. Lavallo, Y. Canac, C. Präsang, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2005, 117, 5851.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  D. Martin, A. Baceiredo, H. Gornitzka, W. W. Schoeller, G. Bertrand, Angew. Chem. Int. Ed. 2005, 44, 1700.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  H. Jacobsen, Dalton Trans. 2006, 18, 2214.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  H. Jacobsen, J. Organomet. Chem. 2005, 690, 6068.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  M. Rullich, R. Tonner, G. Frenking, J. Chem. 2010, 34, 1760.

[37]  M. Schumacher, B. Goldfuss, New J. Chem. 2015, 39, 4508.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  N. Merceron, K. Miqueu, A. Baceiredo, G. Bertrand, J. Am. Chem. Soc. 2002, 124, 6806.
         | Crossref | GoogleScholarGoogle Scholar | 12059184PubMed |

[39]  A. Igau, H. Grützmacher, A. Baceiredo, G. Bertrand, J. Am. Chem. Soc. 1988, 110, 6463.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  F. Lavigne, A. El Kazzi, Y. Escudié, E. Maerten, T. Kato, N. Saffon‐Merceron, V. Branchadell, F. P. Cossío, A. Baceiredo, Chem. – Eur. J. 2014, 20, 12528.
         | Crossref | GoogleScholarGoogle Scholar | 25123091PubMed |

[41]  N. M. Scott, R. Dorta, E. D. Stevens, A. Correa, L. Cavallo, S. P. Nolan, J. Am. Chem. Soc. 2005, 127, 3516.
         | Crossref | GoogleScholarGoogle Scholar | 15755173PubMed |

[42]  A. Fekete, L. Nyulaszi, J. Organomet. Chem. 2002, 643–644, 278.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  H. Jacobsen, A. Correa, C. Costabile, L. Cavallo, J. Organomet. Chem. 2006, 691, 4350.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  W. W. Schoeller, D. Schroeder, A. B. Rozhenko, J. Organomet. Chem. 2005, 690, 6079.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  W. W. Schoeller, E. Niecke, Phys. Chem. Chem. Phys. 2012, 14, 2015.
         | Crossref | GoogleScholarGoogle Scholar | 22228139PubMed |

[46]  L. Nyulászi, Tetrahedron 2000, 56, 79.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  S.-y. Nakafuji, J. Kobayashi, T. Kawashima, Angew. Chem. Int. Ed. 2008, 47, 1141.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  D. Martin, A. Baceiredo, H. Gornitzka, W. W. Schoeller, G. Bertrand, Angew. Chem. Int. Ed. 2005, 44, 1700.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  H. Jacobsen, J. Organomet. Chem. 2005, 690, 6068.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  M. Rullich, R. Tonner, G. Frenking, New J. Chem. 2010, 34, 1760.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. T. Ehara, K. R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. J. A. Vreven, J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Rev E.01 2009 (Gaussian Inc.: Wallingford, CT).

[52]  Y. Zhao, D. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  A. Schafer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  A. Schafer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
         | Crossref | GoogleScholarGoogle Scholar | 16240044PubMed |

[56]  F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057.
         | Crossref | GoogleScholarGoogle Scholar | 16633586PubMed |

[57]  Y. Jung, R. C. Lochan, A. D. Dutoi, M. Head-Gordon, J. Chem. Phys. 2004, 121, 9793.
         | Crossref | GoogleScholarGoogle Scholar | 15549852PubMed |

[58]  F. Neese, WIREs Comput. Mol. Sci. 2018, 8, e1327.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  H. P. Hratchian, H. B. Schlegel, in Theory and Applications of Computational Chemistry: The First 40 Years (Eds C. E. Dykstra, G. Frenking, K. S. Kim, G. Scuseria) 2005, pp. 195–249 (Elsevier: Amsterdam).

[61]  NBO Version 6.0 2013 (Theoretical Chemistry Institute, University of Wisconsin: Madison, WI).

[62]  E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2013, 34, 1429.
         | Crossref | GoogleScholarGoogle Scholar | 23483590PubMed |

[63]  M. Rullich, R. Tonner, G. Frenking, New J. Chem. 2010, 34, 1760.
         | Crossref | GoogleScholarGoogle Scholar |