Synthesis, Characterisation, and Biological Properties of Oxidovanadium(iv) 3,5-Dinitrosalicylhydroxamate Complexes
Bhanu Priya A , Abhishek Kumar A and Neeraj Sharma A BA Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla-171005, India.
B Corresponding author. Email: neerajsharma_univ@yahoo.co.in
Australian Journal of Chemistry 73(1) 61-72 https://doi.org/10.1071/CH19486
Submitted: 30 September 2019 Accepted: 24 November 2019 Published: 24 January 2020
Abstract
The new oxidovanadium(iv) complexes of composition [VO(3,5(NO2)2C6H2(OH)CONHO)2] 1 and [VO(acac)(3,5(NO2)2C6H2(OH)CONHO)] 2 (where acac = (CH3COCHCOCH3)–] have been synthesised by the reactions of VOSO4·5H2O and [VO(acac)2] with potassium 3,5-dinitrosalicylhydroxamate (3,5-(NO2)2SHK) and characterised by elemental analyses, molar conductivity, magnetic moment measurements and FT-IR, UV-vis, and electron spin resonance (ESR) spectroscopies and mass spectrometry. Infrared spectra of complexes have indicated bonding through oxygen atoms of carbonyl and hydroxamic groups (O,O coordination). The magnetic moment, ESR, and mass spectra of the complexes suggested their monomeric nature, and a distorted square-pyramidal geometry around the vanadium has tentatively been proposed. The electrochemical behaviour of 1 and 2 has been studied by cyclic voltammetry. Thermal behaviour of the complexes studied by thermogravimetric and differential thermal analysis techniques has yielded VO2 as the decomposition product. The in vitro antimicrobial activity of the ligand and complexes has been assayed against pathogenic bacteria and fungi by the minimum inhibitory concentration (MIC) method. The in vitro antioxidant activity of the complexes has been determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging method.
References
[1] K. Thompson, Coord. Chem. Rev. 2001, 219–221, 1033.| Crossref | GoogleScholarGoogle Scholar |
[2] K. Kanamori, K. Tsuge, Vanadium Biochemical and Molecular Biological Approaches 2012 (Springer: New York, NY).
[3] D. C. Crans, J. J. Smee, E. Gaidamauskas, L. Yang, Chem. Rev. 2004, 104, 849.
| Crossref | GoogleScholarGoogle Scholar | 14871144PubMed |
[4] D. C. Crans, M. L. Tarlton, C. C. McLauchlan, Eur. J. Inorg. Chem. 2014, 2014, 4450.
| Crossref | GoogleScholarGoogle Scholar |
[5] R. Gupta, G. Hou, R. Renirie, R. Wever, T. Polenova, J. Am. Chem. Soc. 2015, 137, 5618.
| Crossref | GoogleScholarGoogle Scholar | 25856001PubMed |
[6] G. Zampella, P. Fantucci, V. L. Pecoraro, L. De Gioia, J. Am. Chem. Soc. 2005, 127, 953.
| Crossref | GoogleScholarGoogle Scholar | 15656634PubMed |
[7] D. Rehder, J. Oceanography & Marine Res. 2014, 02, 1.
[8] V. Kraehmer, D. Rehder, Dalton Trans. 2012, 41, 5225.
| Crossref | GoogleScholarGoogle Scholar | 22415551PubMed |
[9] C. C. Lee, Y. Hu, M. W. Ribbe, Science 2010, 329, 642.
| Crossref | GoogleScholarGoogle Scholar | 20689010PubMed |
[10] R. Wai-Yin Sun, D.-L. Ma, E. L.-M. Wong, C.-M. Che, Dalton Trans. 2007, 4884.
| Crossref | GoogleScholarGoogle Scholar |
[11] D. Rehder, Inorg. Chim. Acta 2017, 455, 378.
| Crossref | GoogleScholarGoogle Scholar |
[12] J. C. Pessoa, S. Etcheverry, D. Gambino, Coord. Chem. Rev. 2015, 301–302, 24.
| Crossref | GoogleScholarGoogle Scholar |
[13] D. Rehder, Dalton Trans. 2013, 42, 11749.
| Crossref | GoogleScholarGoogle Scholar | 23567506PubMed |
[14] D. C. Crans, J. Org. Chem. 2015, 80, 11899.
| Crossref | GoogleScholarGoogle Scholar | 26544762PubMed |
[15] T. Kiss, É. A. Enyedy, T. Jakusch, Coord. Chem. Rev. 2017, 352, 401.
| Crossref | GoogleScholarGoogle Scholar |
[16] D. Sanna, P. Buglyó, G. Micera, E. Garribba, J. Biol. Inorg. Chem. 2010, 15, 825.
| Crossref | GoogleScholarGoogle Scholar | 20339887PubMed |
[17] A. M. A. Adam, A. M. Naglah, M. A. Al-Omar, M. S. Refat, Int. J. Immunopathol. Pharmacol. 2017, 30, 272.
| Crossref | GoogleScholarGoogle Scholar |
[18] R. K. B. Devi, S. P. Devi, R. K. H. Singh, Spectrosc. Lett. 2012, 45, 93.
| Crossref | GoogleScholarGoogle Scholar |
[19] P. K. Sasmal, S. Saha, R. Majumdar, R. R. Dighe, A. R. Chakravarty, Inorg. Chem. 2010, 49, 849.
| Crossref | GoogleScholarGoogle Scholar | 20039725PubMed |
[20] N. Butenko, A. I. Tomaz, O. Nouri, E. Escribano, V. Moreno, S. Gama, V. Ribeiro, J. P. Telo, J. C. Pesssoa, I. Cavaco, J. Inorg. Biochem. 2009, 103, 622.
| Crossref | GoogleScholarGoogle Scholar | 19230978PubMed |
[21] A. M. Evangelou, Crit. Rev. Oncol. Hematol. 2002, 42, 249.
| Crossref | GoogleScholarGoogle Scholar | 12050018PubMed |
[22] S. Kowalski, D. Wyrzykowski, S. Hac, M. Rychlowski, M. W. Radomski, I. Inkielewicz-Stepniak, Int. J. Mol. Sci. 2019, 20, 261.
| Crossref | GoogleScholarGoogle Scholar |
[23] S. Kowalski, S. Hać, D. Wyrzykowski, A. Zauszkiewicz-Pawlak, I. Inkielewicz-Stępniak, Oncotarget 2017, 8, 60324.
| Crossref | GoogleScholarGoogle Scholar | 28947974PubMed |
[24] D. C. Crans, J. T. Koehn, S. M. Petry, C. M. Glover, A. Wijetunga, R. Kaur, A. Levina, P. A. Lay, Dalton Trans. 2019, 48, 6383.
| Crossref | GoogleScholarGoogle Scholar | 30941380PubMed |
[25] J. J. Martínez Medina, L. G. Naso, A. L. Pérez, A. Rizzi, E. G. Ferrer, P. A. M. Williams, J. Inorg. Biochem. 2017, 166, 150.
| Crossref | GoogleScholarGoogle Scholar | 27863301PubMed |
[26] L. G. Naso, L. Lezama, M. Valcarcel, C. Salado, P. Villacé, D. Kortazar, E. G. Ferrer, P. A. M. Williams, J. Inorg. Biochem. 2016, 157, 80.
| Crossref | GoogleScholarGoogle Scholar | 26828287PubMed |
[27] K. Savithri, H. D. Revanasiddappa, Bioinorg. Chem. Appl. 2018, 2018, 1.
| Crossref | GoogleScholarGoogle Scholar |
[28] M. Fernández, L. Becco, I. Correia, J. Benítez, O. E. Piro, G. A. Echeverria, A. Medeiros, M. Comini, M. L. Lavaggi, M. González, H. Cerecetto, V. Moreno, J. C. Pessoa, B. Garat, D. Gambino, J. Inorg. Biochem. 2013, 127, 150.
| Crossref | GoogleScholarGoogle Scholar | 23528424PubMed |
[29] M. Fernández, J. Varela, I. Correia, E. Birriel, J. Castiglioni, V. Moreno, J. Costa Pessoa, H. Cerecetto, M. González, D. Gambino, Dalton Trans. 2013, 42, 11900.
| Crossref | GoogleScholarGoogle Scholar | 23787783PubMed |
[30] G. Scalese, J. Benítez, S. Rostán, I. Correia, L. Bradford, M. Vieites, L. Minini, A. Merlino, E. L. Coitiño, E. Birriel, J. Varela, H. Cerecetto, M. González, J. C. Pessoa, D. Gambino, J. Inorg. Biochem. 2015, 147, 116.
| Crossref | GoogleScholarGoogle Scholar | 25824466PubMed |
[31] P. de Almeida Machado, V. Z. Mota, A. C. de Lima Cavalli, G. S. G. de Carvalho, A. D. Da Silva, J. Gameiro, A. Cuin, E. S. Coimbra, Acta Trop. 2015, 148, 120.
| Crossref | GoogleScholarGoogle Scholar |
[32] M. R. Maurya, C. Haldar, A. A. Khan, A. Azam, A. Salahuddin, A. Kumar, J. Costa Pessoa, Eur. J. Inorg. Chem. 2012, 2012, 2560.
| Crossref | GoogleScholarGoogle Scholar |
[33] I. Correia, P. Adão, S. Roy, M. Wahba, C. Matos, M. R. Maurya, F. Marques, F. R. Pavan, C. Q. F. Leite, F. Avecilla, J. Costa Pessoa, J. Inorg. Biochem. 2014, 141, 83.
| Crossref | GoogleScholarGoogle Scholar | 25226436PubMed |
[34] P. W. Winter, A. Al-Qatati, A. L. Wolf-Ringwall, S. Schoeberl, P. B. Chatterjee, B. G. Barisas, D. A. Roess, D. C. Crans, Dalton Trans. 2012, 41, 6419.
| Crossref | GoogleScholarGoogle Scholar | 22569684PubMed |
[35] K. G. Peters, M. G. Davis, B. W. Howard, M. Pokross, V. Rastogi, C. Diven, K. D. Greis, E. Eby-Wilkens, M. Maier, A. Evdokimov, S. Soper, F. Genbauffe, J. Inorg. Biochem. 2003, 96, 321.
| Crossref | GoogleScholarGoogle Scholar | 12888267PubMed |
[36] K. H. Thompson, J. Lichter, C. LeBel, M. C. Scaife, J. H. McNeill, C. Orvig, J. Inorg. Biochem. 2009, 103, 554.
| Crossref | GoogleScholarGoogle Scholar | 19162329PubMed |
[37] P. G. A. Martins, M. Mori, L. D. Chiaradia-Delatorre, A. C. O. Menegatti, A. Mascarello, B. Botta, J. Benítez, D. Gambino, H. Terenzi, ACS Med. Chem. Lett. 2015, 6, 1035.
| Crossref | GoogleScholarGoogle Scholar |
[38] D. C. Edwards, S. C. B. Myneni, J. Phys. Chem. A 2005, 109, 10249.
| Crossref | GoogleScholarGoogle Scholar | 16833318PubMed |
[39] Y. K. Agarwal, C. K. Sharma, Indian J. Chem. 2007, 46A, 1772.
[40] L. Bauer, O. Exner, Angew. Chem. Int. Ed. Engl. 1974, 13, 376.
| Crossref | GoogleScholarGoogle Scholar |
[41] E. M. F. Muri, M. J. Nieto, R. D. Sindelar, J. S. Williamson, Curr. Med. Chem. 2002, 9, 1631.
| Crossref | GoogleScholarGoogle Scholar |
[42] J. Senger, J. Melesina, M. Marek, C. Romier, I. Oehme, O. Witt, W. Sippl, M. Jung, J. Med. Chem. 2016, 59, 1545.
| Crossref | GoogleScholarGoogle Scholar | 26653328PubMed |
[43] D. I. Ugwu, B. E. Ezema, F. U. Eze, J. I. Ayogu, C. G. Ezema, D. I. Ugwuja, Am. J. Org. Chem. 2014, 4, 26.
| Crossref | GoogleScholarGoogle Scholar |
[44] S. Kumari, N. Sharma, J. Coord. Chem. 2019, 72, 584.
| Crossref | GoogleScholarGoogle Scholar |
[45] A. L. Thomas, W. P. Steward, Expert Opin. Investig. Drugs 2000, 9, 2913.
| Crossref | GoogleScholarGoogle Scholar | 11093361PubMed |
[46] D. A. Brown, L. P. Cuffe, N. J. Fitzpatrick, Á. T. Ryan, Inorg. Chem. 2004, 43, 297.
| Crossref | GoogleScholarGoogle Scholar | 14704080PubMed |
[47] R. Codd, Coord. Chem. Rev. 2008, 252, 1387.
| Crossref | GoogleScholarGoogle Scholar |
[48] S. P. Gupta, Chem. Rev. 2015, 115, 6427.
| Crossref | GoogleScholarGoogle Scholar | 26024019PubMed |
[49] J. Golenser, A. Tsafack, Y. Amichai, J. Libman, A. Shanzer, Z. I. Cabantchik, Antimicrob. Agents Chemother. 1995, 39, 61.
| Crossref | GoogleScholarGoogle Scholar | 7695330PubMed |
[50] E. Farkas, Talanta 2002, 57, 935.
| Crossref | GoogleScholarGoogle Scholar | 18968698PubMed |
[51] B. S. Creaven, M. Devereux, D. Karcz, A. Kellett, M. McCann, A. Noble, M. Walsh, J. Inorg. Biochem. 2009, 103, 1196.
| Crossref | GoogleScholarGoogle Scholar | 19631386PubMed |
[52] A. E. Fazary, M. M. Khalil, A. Fahmy, A. Tantawy, Med. J. Islam. Acad. Sci. 2001, 14, 109.
[53] Z.-Q. Feng, X.-L. Yang, Y.-F. Ye, L.-Y. Hao, Bull. Korean Chem. Soc. 2014, 35, 1121.
| Crossref | GoogleScholarGoogle Scholar |
[54] T. M. Fasina, F. N. Ejiah, C. U. Dueke-Eze, N. Idika, Int. J. Biol. Chem. 2013, 7, 79.
| Crossref | GoogleScholarGoogle Scholar |
[55] S. Sharma, N. Sharma, Der Chem. Sin. 2013, 4, 108.
[56] N. Sharma, V. Kumar, R. Sharma, M. Kumari, S. S. Kanwar, Bull. Chem. Soc. Jpn. 2011, 84, 855.
| Crossref | GoogleScholarGoogle Scholar |
[57] A. Kumar, B. Priya, A. Thakur, N. Sharma, Adv. Sci. Eng. Med. 2018, 10, 27.
| Crossref | GoogleScholarGoogle Scholar |
[58] B. Priya, M. Sharma, S. Sood, A. Kumar, A. Bharti, N. Sharma, Adv. Sci. Eng. Med. 2018, 10, 129.
| Crossref | GoogleScholarGoogle Scholar |
[59] N. Sharma, M. Kumari, V. Kumar, S. C. Chaudhry, S. S. Kanwar, J. Coord. Chem. 2010, 63, 1940.
| Crossref | GoogleScholarGoogle Scholar |
[60] N. Sharma, M. Kumari, V. Kumar, S. C. Chaudhry, S. S. Kanwar, J. Coord. Chem. 2010, 63, 176.
| Crossref | GoogleScholarGoogle Scholar |
[61] V. K. Choudhary, A. K. Bhatt, N. Sharma, J. Coord. Chem. 2019, 72, 372.
| Crossref | GoogleScholarGoogle Scholar |
[62] B. E. Bryant, W. C. Fernelius, D. H. Busch, R. C. Stoufer, W. Stratton, in Inorganic Syntheses (Ed. T. Moeller) 1957 , Vol. 5, p. 113 (John Wiley: Hoboken, NJ).
[63] A. I. Vogel, A Textbook of Practical Organic Chemistry 1971 (Lowe and Brydone (Printers) Ltd: Thetford, Norfolk).
[64] D. Greenwood, R. Slack, J. F. Peutherer, Medical Microbiology: A Guide to Microbial Infections: Pathogenesis, Immunity, Laboratory Diagnosis and Control 2007 (Churchill Livingstone: London).
[65] J. G. Collee, J. E. McCartney, T. J. Mackie, Practical Medical Microbiology (13th edn) 1989 (Churchill Livingstone: London).
[66] R. A. Khalifa, M. S. Nasser, A. A. Gomaa, N. M. Osman, H. M. Salem, Egypt. J. Chest Dis. Tuberc. 2013, 62, 241.
| Crossref | GoogleScholarGoogle Scholar |
[67] M. S. Blois, Nature 1958, 181, 1199.
| Crossref | GoogleScholarGoogle Scholar |
[68] B. Ilhan-Ceylan, E. Tuzun, Y. Kurt, M. Acikgoz, S. Kahraman, G. Atun, B. Ulkuseven, J. Sulfur Chem. 2015, 36, 434.
| Crossref | GoogleScholarGoogle Scholar |
[69] W. J. Geary, Coord. Chem. Rev. 1971, 7, 81.
| Crossref | GoogleScholarGoogle Scholar |
[70] B. N. Figgis, Introduction to Ligand Fields 1966 (John Wiley & Sons Ltd: New York, NY).
[71] H. J. Stoklosa, J. R. Wasson, J. McCormick, Inorg. Chem. 1974, 13, 592.
| Crossref | GoogleScholarGoogle Scholar |
[72] S. H. Cheng, S. R. Sheen, C. P. Cheng, C. T. Chang, Inorg. Chim. Acta 1990, 171, 21.
| Crossref | GoogleScholarGoogle Scholar |
[73] C. J. Ballhausen, H. B. Gray, Inorg. Chem. 1962, 1, 111.
| Crossref | GoogleScholarGoogle Scholar |
[74] N. Sharma, B. Priya, V. K. Choudhary, M. Sharma, A. Kumar, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 2019, 1.
| Crossref | GoogleScholarGoogle Scholar |
[75] N. Raman, S. J. Raja, J. Joseph, J. D. Raja, Russ. J. Coord. Chem. 2007, 33, 7.
| Crossref | GoogleScholarGoogle Scholar |
[76] A. Sheela, N. C. Sarada, R. Vijayaraghavan, Med. Chem. Res. 2013, 22, 2929.
| Crossref | GoogleScholarGoogle Scholar |
[77] D. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of Analytical Chemistry, 9th edn 2014 (Cengage Learning: Boston, MA).
[78] Z. H. Chohan, C. T. Supuran, A. Scozzafava, J. Enzyme Inhib. Med. Chem. 2004, 19, 79.
| Crossref | GoogleScholarGoogle Scholar | 15202497PubMed |
[79] Z. H. Chohan, Mahmood-ul-Hassan, K. M. Khan, C. T. Supuran, J. Enzyme Inhib. Med. Chem. 2005, 20, 183.
| Crossref | GoogleScholarGoogle Scholar | 15968823PubMed |