Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Mixed Ramp-Gaussian Basis Sets for Core-Dependent Properties: STO-RG and STO-R2G for Li-Ne

Claudia S. Cox https://orcid.org/0000-0002-6492-4822 A , Juan Camilo Zapata https://orcid.org/0000-0003-3916-9850 A B and Laura K. McKemmish https://orcid.org/0000-0003-1039-2143 A C
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University of New South Wales, Kensington, Sydney, NSW 2052, Australia.

B Departamento de Ciencias Químicas, Universidad Icesi, Cali, Valle del Cauca, Colombia.

C Corresponding author. Email: l.mckemmish@unsw.edu.au

Australian Journal of Chemistry 73(10) 911-922 https://doi.org/10.1071/CH19466
Submitted: 24 September 2019  Accepted: 5 November 2019   Published: 31 March 2020

Abstract

The traditional Gaussian basis sets used in modern quantum chemistry lack an electron-nuclear cusp, and hence struggle to accurately describe core electron properties. A recently introduced novel type of basis set, mixed ramp-Gaussians, introduce a new primitive function called a ramp function which addresses this issue. This paper introduces three new mixed ramp-Gaussian basis sets - STO-R, STO-RG and STO-R2G, made from a linear combination of ramp and Gaussian primitive functions - which are derived from the single-core-zeta Slater basis sets for the elements Li to Ne. This derivation is done in an analogous fashion to the famous STO-nG basis sets. The STO-RG basis functions are found to outperform the STO-3G basis functions and STO-R2G outperforms STO-6G, both in terms of wavefunction fit and other key quantities such as the one-electron energy and the electron-nuclear cusp. The second part of this paper performs preliminary investigations into how standard all-Gaussian basis sets can be converted to ramp-Gaussian basis sets through modifying the core basis functions. Using a test case of the 6-31G basis set for carbon, we determined that the second Gaussian primitive is less important when fitting a ramp-Gaussian core basis function directly to an all-Gaussian core basis function than when fitting to a Slater basis function. Further, we identified the basis sets that are single-core-zeta and thus should be most straightforward to convert to mixed ramp-Gaussian basis sets in the future.


References

[1]  É. Brémond, M. Savarese, N. Q. Su, Á. J. Pérez-Jiménez, X. Xu, J. C. Sancho-Garcia, C. Adamo, J. Chem. Theory Comput. 2016, 12, 459.
         | Crossref | GoogleScholarGoogle Scholar | 26730741PubMed |

[2]  A. Karton, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016, 6, 292.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  K. A. Peterson, D. Feller, D. A. Dixon, Theor. Chem. Acc. 2012, 131, 1079.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  G. J. Cheng, X. Zhang, L. W. Chung, L. Xu, Y. D. Wu, J. Am. Chem. Soc. 2015, 137, 1706.
         | Crossref | GoogleScholarGoogle Scholar | 25568962PubMed |

[5]  J. A. Pople, Rev. Mod. Phys. 1999, 71, 1267.

[6]  L. Goerigk, N. Mehta, Aust. J. Chem. 2019, 72, 563.

[7]  J. I. Gersten, S. W. Frederick, The Physics and Chemistry of Materials 2001 (Wiley-Interscience: Hoboken, NJ).

[8]  R. Darbeau, Appl. Spectrosc. Rev. 2006, 41, 401.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  F. Jensen, J. Chem. Theory Comput. 2008, 4, 719.
         | Crossref | GoogleScholarGoogle Scholar | 26621087PubMed |

[10]  F. Jensen, J. Chem. Theory Comput. 2015, 11, 132.
         | Crossref | GoogleScholarGoogle Scholar | 26574211PubMed |

[11]  F. Jensen, Theor. Chem. Acc. 2010, 126, 371.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  M. M. Roessler, E. Salvadori, Chem. Soc. Rev. 2018, 47, 2534.
         | Crossref | GoogleScholarGoogle Scholar | 29498718PubMed |

[13]  M. J. Felton, Anal. Chem. 2003, 75, 269A.
         | 12948117PubMed |

[14]  T. C. Gibb, Principles of Mössbauer Spectroscopy 1976 (Springer: Norwich).

[15]  Z. H. Loh, S. R. Leone, J. Phys. Chem. Lett. 2013, 4, 292.
         | Crossref | GoogleScholarGoogle Scholar | 26283437PubMed |

[16]  P. M. Kraus, M. Zürch, S. K. Cushing, D. M. Neumark, S. R. Leone, Nat. Rev. Chem. 2018, 2, 82.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  M. A. Ambroise, F. Jensen, J. Chem. Theory Comput. 2019, 15, 325.
         | Crossref | GoogleScholarGoogle Scholar | 30495950PubMed |

[18]  F. Jensen, Introduction to Computational Chemistry, 2nd edn 2007 Vol. 90 (John Wiley & Sons: Chichester).

[19]  J. C. Slater, Phys. Rev. 1930, 36, 57.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  P. E. Hoggan, M. Belen Ruíz, T. Ozdogan, in Quantum Frontiers of Atoms and Molecules (Ed. M. V. Putz) 2011, Ch. 4, pp. 61–90 (Nova Publishing Inc.: New York, NY).

[21]  F. E. Harris, H. H. Michels, J. Chem. Phys. 1965, 43, S165.

[22]  F. E. Harris, H. H. Michels, J. Chem. Phys. 1966, 45, 116.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  J. D. Talman, J. Chem. Phys. 1984, 80, 2000.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  E. Filter, E. O. Steinborn, Phys. Rev. A 1978, 18, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  S. Huzinaga, Comput. Phys. Rep. 1985, 2, 281.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  S. F. Boys, Proc. R. Soc. Lond. 1950, A200.

[28]  A. F. Jalbout, F. Nazari, L. Turker, J. Mol. Struct. THEOCHEM 2004, 671, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  P. M. Gill, B. G. Johnson, J. A. Pople, Chem. Phys. Lett. 1994, 217, 65.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  W. J. Hehre, R. F. Stewart, J. A. Pople, J. Chem. Phys. 1969, 51, 2657.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  K. D. Dobbs, W. J. Hehre, J. Comput. Chem. 1987, 8, 861.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  W. J. Hehre, K. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  V. A. Rassolov, J. A. Pople, M. A. Ratner, T. L. Windus, J. Chem. Phys. 1998, 109, 1223.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 1984, 80, 3265.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  D. E. Woon, T. H. Dunning, J. Chem. Phys. 1995, 103, 4572.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  K. A. Peterson, T. H. Dunning, J. Chem. Phys. 2002, 117, 10548.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  F. Jensen, J. Chem. Phys. 2001, 115, 9113.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  F. Jensen, J. Chem. Theory Comput. 2014, 10, 1074.
         | Crossref | GoogleScholarGoogle Scholar | 26580184PubMed |

[41]  F. Jensen, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013, 3, 273.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  B. Nagy, F. Jensen, Rev. Comput. Chem. 2017, 30, 93.

[43]  D. Feller, J. Comput. Chem. 1996, 17, 1571.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T. L. Windus, J. Chem. Inf. Model. 2007, 47, 1045.
         | Crossref | GoogleScholarGoogle Scholar | 17428029PubMed |

[45]  L. K. McKemmish, P. M. Gill, J. Chem. Theory Comput. 2012, 8, 4891.
         | Crossref | GoogleScholarGoogle Scholar | 26593182PubMed |

[46]  A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  F. Neese, Inorg. Chim. Acta. 2002, 337, 181.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  R. Laasner, W. Huhn, J. Colell, T. Theis, V. Yu, W. Warren, V. Blum, Comput. Phys. 2018, arXiv:1805.12225.

[49]  I. Y. Zhang, X. Ren, P. Rinke, V. Blum, M. Scheffler, New J. Phys. 2013, 15, 123033.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  L. K. McKemmish, A. T. Gilbert, P. M. Gill, J. Chem. Theory Comput. 2014, 10, 4369.
         | Crossref | GoogleScholarGoogle Scholar | 26588134PubMed |

[51]  D. M. Bishop, J. Chem. Phys. 1964, 40, 1322.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  D. M. Bishop, J. Chem. Phys. 1968, 48, 291.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  L. K. McKemmish, J. Chem. Phys. 2015, 142, 134104.
         | Crossref | GoogleScholarGoogle Scholar | 25854225PubMed |

[54]  L. K. McKemmish, A. T. Gilbert, J. Chem. Theory Comput. 2015, 11, 3679.
         | Crossref | GoogleScholarGoogle Scholar | 26574451PubMed |

[55]  Wolfram Research, Mathematica 2018 (Wolfram Research: Champaign, IL).

[56]  R. S. Grev, H. F. Schaefer, J. Chem. Phys. 1989, 91, 7305.
         | Crossref | GoogleScholarGoogle Scholar |