Chemical Synthesis of an Enzyme Containing an Artificial Catalytic Apparatus*
Vladimir Torbeev A B and Stephen B. H. Kent A CA Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
B Current address: Laboratory of Protein Chemistry, Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8 Allée Gaspard Monge, BP 70028, 67083 Strasbourg (Cedex), France.
C Corresponding author. Email: skent@uchicago.edu
Australian Journal of Chemistry 73(4) 321-326 https://doi.org/10.1071/CH19460
Submitted: 18 September 2019 Accepted: 11 October 2019 Published: 11 December 2019
Abstract
With the goal of investigating electronic aspects of the catalysis of peptide bond hydrolysis, an analogue of HIV-1 protease was designed in which a non-peptide hydroxy-isoquinolinone artificial catalytic apparatus replaced the conserved Asp25–Thr26–Gly27 sequence in each 99-residue polypeptide chain of the homodimeric enzyme molecule. The enzyme analogue was prepared by total chemical synthesis and had detectable catalytic activity on known HIV-1 protease peptide substrates. Compared with uncatalyzed hydrolysis, the analogue enzyme increased the rate of peptide bond hydrolysis by ∼108-fold. Extensions of this unique approach to the study of enzyme catalysis in HIV-1 protease are discussed.
References
[1] L. H. Pearl, W. R. Taylor, Nature 1987, 329, 351.| Crossref | GoogleScholarGoogle Scholar | 3306411PubMed |
[2] M. Miller, J. Schneider, B. K. Sathyranarayana, M. V. Toth, G. R. Marshall, L. Clawson, L. Selk, S. B. H. Kent, A. Wlodawer, Science 1989, 246, 1149.
| Crossref | GoogleScholarGoogle Scholar | 2686029PubMed |
[3] A. Radzicka, R. Wolfenden, J. Am. Chem. Soc. 1996, 118, 6105.
| Crossref | GoogleScholarGoogle Scholar |
[4] K. Suguna, E. A. Padlan, C. W. Smith, W. D. Carlson, D. R. Davies, Proc. Natl. Acad. Sci. USA 1987, 84, 7009.
| Crossref | GoogleScholarGoogle Scholar | 3313384PubMed |
[5] G. F. Short, A. L. Laikhter, M. Lodder, Y. Shayo, T. Arslan, S. M. Hecht, Biochemistry 2000, 39, 8768.
| Crossref | GoogleScholarGoogle Scholar | 10913288PubMed |
[6] P. R. Wells, Chem. Rev. 1963, 63, 171.
| Crossref | GoogleScholarGoogle Scholar |
[7] V. Y. Torbeev, K. Mandal, V. A. Terechko, S. B. H. Kent, Bioorg. Med. Chem. Lett. 2008, 18, 4554.
| Crossref | GoogleScholarGoogle Scholar | 18657969PubMed |
[8] M. C. Surles, J. S. Richardson, D. C. Richardson, F. P. Brooks, Protein Sci. 1994, 3, 198.
| Crossref | GoogleScholarGoogle Scholar | 8003957PubMed |
[9] A. M. Mildner, D. J. Rothrock, J. W. Leone, C. A. Bannow, J. M. Lull, I. M. Reardon, J. L. Sarcich, W. J. Howe, C.-S. C. Tomich, C. W. Smith, R. L. Heinrikson, A. G. Tomasselli, Biochemistry 1994, 33, 9405.
| Crossref | GoogleScholarGoogle Scholar | 8068616PubMed |
[10] A. Dantas de Araujo, C. Christensen, J. Buchardt, S. B. H. Kent, P. F. Alewood, Chem. – Eur. J. 2011, 17, 13983.
| Crossref | GoogleScholarGoogle Scholar |
[11] V. Y. Torbeev, S. B. H. Kent, Angew. Chem. Int. Ed. 2007, 46, 1667.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. Baca, S. B. H. Kent, Proc. Natl. Acad. Sci. USA 1993, 90, 11638.
| Crossref | GoogleScholarGoogle Scholar | 8265601PubMed |
[13] R. Wolfenden, M. J. Snider, Acc. Chem. Res. 2001, 34, 938.
| Crossref | GoogleScholarGoogle Scholar | 11747411PubMed |
[14] D. Hilvert, Annu. Rev. Biochem. 2000, 69, 751.
| Crossref | GoogleScholarGoogle Scholar | 10966475PubMed |
[15] H. Kries, R. Blomberg, D. Hilvert, Curr. Opin. Chem. Biol. 2013, 17, 221.
| Crossref | GoogleScholarGoogle Scholar | 23498973PubMed |
[16] A. J. Burton, A. R. Thomson, W. M. Dawson, R. L. Brady, D. N. Woolfson, Nat. Chem. 2016, 8, 837.
| Crossref | GoogleScholarGoogle Scholar | 27554410PubMed |
[17] K. Strisovsky, U. Tessmer, J. Langner, J. Konvalinka, H. G. Krausslich, Protein Sci. 2000, 9, 1631.
| Crossref | GoogleScholarGoogle Scholar | 11045610PubMed |