Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

On-Resin Strategy to Label α-Conotoxins: Cy5-RgIA, a Potent α9α10 Nicotinic Acetylcholine Receptor Imaging Probe

Markus Muttenthaler A B E , Simon T. Nevin C , Marco Inserra A , Richard J. Lewis A , David J. Adams D and Paul F. Alewood A E
+ Author Affiliations
- Author Affiliations

A Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia.

B Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.

C Centre for Advanced Imaging, The University of Queensland, Brisbane, Qld 4072, Australia.

D Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.

E Corresponding authors. Email: markus.muttenthaler@univie.ac.at; p.alewood@uq.edu.au

Australian Journal of Chemistry 73(4) 327-333 https://doi.org/10.1071/CH19456
Submitted: 13 September 2019  Accepted: 16 October 2019   Published: 3 December 2019

Abstract

In-solution conjugation is the most commonly used strategy to label peptides and proteins with fluorophores. However, lack of site-specific control and high costs of fluorophores are recognised limitations of this approach. Here, we established facile access to grams of Cy5-COOH via a two-step synthetic route, demonstrated that Cy5 is stable to HF treatment and therefore compatible with tert-butyloxycarbonyl solid phase peptide synthesis (Boc-SPPS), and coupled Cy5 to the N-terminus of α-conotoxin RgIA while still attached to the resin. Folding of the two-disulfide containing Cy5-RgIA benefitted from the hydrophobic nature of Cy5, resulting in only the globular disulfide bond isomer. In contrast, wild-type α-RgIA folded into the inactive ribbon and bioactive globular isomer under the same conditions. Labelled α-RgIA retained its ability to inhibit acetylcholine (100 µM)-evoked current reversibly with an IC50 of 5.0 nM (Hill coefficient = 1.7) for Cy5-RgIA and an IC50 of 1.6 (Hill coefficient = 1.2) for α-RgIA at the α9α10 nicotinic acetylcholine receptor (nAChR) heterologously expressed in Xenopus oocytes. Cy5-RgIA was then used to successfully visualise nAChRs in the RAW264.7 mouse macrophage cell line. This work introduced not only a new and valuable nAChR probe, but also a new versatile synthetic strategy that facilitates production of milligram to gram quantities of fluorophore-labelled peptides at low cost, which is often required for in vivo experiments. The strategy is compatible with Boc- and 9-fluorenylmethoxycarbonyl (Fmoc)-chemistry, allows site-specific labelling of free amines anywhere in the peptide sequence, and can also be used for the introduction of Cy3/Cy5 fluorescence resonance energy transfer (FRET) pairs.


References

[1]  (a) R. Hurst, H. Rollema, D. Bertrand, Pharmacol. Ther. 2013, 137, 22.
         | Crossref | GoogleScholarGoogle Scholar | 22925690PubMed |
      (b) N. S. Millar, C. Gotti, Neuropharmacology 2009, 56, 237.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. X. Albuquerque, E. F. R. Pereira, M. Alkondon, S. W. Rogers, Physiol. Rev. 2009, 89, 73.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. Gotti, M. Zoli, F. Clementi, Trends Pharmacol. Sci. 2006, 27, 482.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) C. Gotti, F. Clementi, Prog. Neurobiol. 2004, 74, 363.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) R. L. Papke, Biochem. Pharmacol. 2014, 89, 1.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. N. Romanelli, P. Gratteri, L. Guandalini, E. Martini, C. Bonaccini, F. Gualtieri, ChemMedChem 2007, 2, 746.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  K. T. Dineley, A. A. Pandya, J. L. Yakel, Trends Pharmacol. Sci. 2015, 36, 96.
         | Crossref | GoogleScholarGoogle Scholar | 25639674PubMed |

[3]  (a) D. Kudryavtsev, I. Shelukhina, C. Vulfius, T. Makarieva, V. Stonik, M. Zhmak, I. Ivanov, I. Kasheverov, Y. Utkin, V. Tsetlin, Toxins 2015, 7, 1683.
         | Crossref | GoogleScholarGoogle Scholar | 26008231PubMed |
      (b) C. M. Barber, G. K. Isbister, W. C. Hodgson, Toxicon 2013, 66, 47.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Dutertre, A. Nicke, V. I. Tsetlin, Neuropharmacology 2017, 127, 196.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) E. K. M. Lebbe, S. Peigneur, I. Wijesekara, J. Tytgat, Mar. Drugs 2014, 12, 2970.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. Muttenthaler, K. B. Akondi, P. F. Alewood, Curr. Pharm. Des. 2011, 17, 4226.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. B. Akondi, M. Muttenthaler, S. Dutertre, Q. Kaas, D. J. Craik, R. J. Lewis, P. F. Alewood, Chem. Rev. 2014, 114, 5815.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Giribaldi, S. Dutertre, Neurosci. Lett. 2018, 679, 24.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  A. A. Grishin, C.-I. A. Wang, M. Muttenthaler, P. F. Alewood, R. J. Lewis, D. J. Adams, J. Biol. Chem. 2010, 285, 22254.
         | Crossref | GoogleScholarGoogle Scholar | 20466726PubMed |

[6]  V. A. Vishwanath, J. M. McIntosh, Bioconjug. Chem. 2006, 17, 1612.
         | Crossref | GoogleScholarGoogle Scholar | 17105243PubMed |

[7]  P. Whiteaker, J. M. McIntosh, S. Luo, A. C. Collins, M. J. Marks, Mol. Pharmacol. 2000, 57, 913.
         | 10779374PubMed |

[8]  A. J. Hone, P. Whiteaker, S. Christensen, Y. Xiao, E. L. Meyer, J. M. McIntosh, J. Neurochem. 2009, 111, 80.
         | Crossref | GoogleScholarGoogle Scholar | 19650873PubMed |

[9]  A. J. Hone, P. Whiteaker, J. L. Mohn, M. H. Jacob, J. M. McIntosh, J. Neurochem. 2010, 114, 994.
         | 20492354PubMed |

[10]  P. Whiteaker, M. J. Marks, S. Christensen, C. Dowell, A. C. Collins, J. M. McIntosh, J. Pharmacol. Exp. Ther. 2008, 325, 910.
         | Crossref | GoogleScholarGoogle Scholar | 18323456PubMed |

[11]  (a) A. C. Conibear, N. L. Daly, D. J. Craik, Biopolymers 2012, 98, 518.
         | Crossref | GoogleScholarGoogle Scholar | 23203757PubMed |
      (b) M. A. Buck, T. A. Olah, C. J. Weitzmann, B. S. Cooperman, Anal. Biochem. 1989, 182, 295.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. Moffatt, P. Senkans, D. Ricketts, J. Chromatogr. A 2000, 891, 235.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  G. A. Korbel, G. Lalic, M. D. Shair, J. Am. Chem. Soc. 2001, 123, 361.
         | Crossref | GoogleScholarGoogle Scholar | 11456535PubMed |

[13]  M. Schnölzer, P. F. Alewood, A. Jones, D. Alewood, S. B. H. Kent, Int. J. Pept. Protein Res. 1992, 40, 180.
         | Crossref | GoogleScholarGoogle Scholar | 1478777PubMed |

[14]  M. Muttenthaler, F. Albericio, P. E. Dawson, Nat. Protoc. 2015, 10, 1067.
         | Crossref | GoogleScholarGoogle Scholar | 26086408PubMed |

[15]  R. J. Clark, H. Fischer, S. T. Nevin, D. J. Adams, D. J. Craik, J. Biol. Chem. 2006, 281, 23254.
         | Crossref | GoogleScholarGoogle Scholar | 16754662PubMed |

[16]  (a) R. J. Clark, N. L. Daly, R. Halai, S. T. Nevin, D. J. Adams, D. J. Craik, FEBS Lett. 2008, 582, 597.
         | Crossref | GoogleScholarGoogle Scholar | 18242183PubMed |
      (b) M. Ellison, C. Haberlandt, M. E. Gomez-Casati, M. Watkins, A. B. Elgoyhen, J. M. McIntosh, B. M. Olivera, Biochemistry 2006, 45, 1511.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  M. Vincler, S. Wittenauer, R. Parker, M. Ellison, B. M. Olivera, J. M. McIntosh, Proc. Natl. Acad. Sci. USA 2006, 103, 17880.
         | Crossref | GoogleScholarGoogle Scholar | 17101979PubMed |

[18]  (a) H. Wang, M. Yu, M. Ochani, C. A. Amella, M. Tanovic, S. Susarla, J. H. Li, H. Wang, H. Yang, L. Ulloa, Y. Al-Abed, C. J. Czura, K. J. Tracey, Nature 2003, 421, 384.
         | Crossref | GoogleScholarGoogle Scholar | 12508119PubMed |
      (b) Y. Y. Wang, Y. Liu, X. Y. Ni, Z. H. Bai, Q. Y. Chen, Y. Zhang, F. G. Gao, Oncol. Rep. 2014, 31, 1480.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Yi, J.-f. Luo, B.-b. Xie, J.-x. Liu, J.-y. Wang, L. Liu, P.-x. Wang, H. Zhou, Y. Dong, Shock 2015, 44, 188.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) L. Moroder, H.-J. Musiol, M. Götz, C. Renner, Biopolymers 2005, 80, 85.
         | Crossref | GoogleScholarGoogle Scholar | 15612050PubMed |
      (b) G. Bulaj, B. M. Olivera, Antioxid. Redox Signal. 2008, 10, 141.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) C. Bouteiller, G. Clave, A. Bernardin, B. Chipon, M. Massonneau, P.-Y. Renard, A. Romieu, Bioconjug. Chem. 2007, 18, 1303.
         | Crossref | GoogleScholarGoogle Scholar | 17583926PubMed |
      (b) X. Li, X. Gao, W. Shi, H. Ma, Chem. Rev. 2014, 114, 590.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) D. J. Adams, B. Callaghan, G. Berecki, Br. J. Pharmacol. 2012, 166, 486.
         | Crossref | GoogleScholarGoogle Scholar | 22091786PubMed |
      (b) B. Callaghan, D. J. Adams, Channels 2010, 4, 51.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Di Cesare Mannelli, L. Cinci, L. Micheli, M. Zanardelli, A. Pacini, M. McIntosh, C. Ghelardini, Pain 2014, 155, 1986.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. T. Nevin, R. J. Clark, H. Klimis, M. J. Christie, D. J. Craik, D. J. Adams, Mol. Pharmacol. 2007, 72, 1406.
         | Crossref | GoogleScholarGoogle Scholar |