Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Microfluidic Synthesis of Rifampicin Loaded PLGA Nanoparticles and the Effect of Formulation on their Physical and Antibacterial Properties

Thomas G. Meikle A B , Calum J. Drummond A and Charlotte E. Conn A
+ Author Affiliations
- Author Affiliations

A RMIT University, School of Science, College of Science Engineering and Health, 124 La Trobe Street, Melbourne, Vic. 3000, Australia.

B Corresponding author. Email: thomas.meikle@rmit.edu.au

Australian Journal of Chemistry 73(3) 151-157 https://doi.org/10.1071/CH19359
Submitted: 30 July 2019  Accepted: 2 September 2019   Published: 17 October 2019

Abstract

The encapsulation of drugs in nanoparticles serves as an effective way to modify pharmacokinetics and therapeutic efficacy. Nanoparticles comprised of poly(d,l-lactide-co-glycolide) (PLGA) are well suited for this purpose; they are accessible using multiple synthesis methods, are highly biocompatible and biodegradable, and possess desirable drug release properties. In the present study, we have explored the effects of various formulation parameters on the physical properties of PLGA nanoparticles synthesised using a microfluidic assisted nanoprecipitation method and loaded with a model drug. PLGA nanoparticles, with diameters ranging from 165–364 nm, were produced using three alternate stabilisers; poly(vinyl alcohol) (PVA), d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), and didodecyldimethylammonium bromide (DMAB). Three additional formulations used PVA in addition to 20 wt-% 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-di-O-octadecenyl-3-trimethylammonium propane (DOTMA), and oleic acid. Spectrophotometric analysis demonstrated that the use of PVA increased the loading efficiency over that of TPGS and DMAB formulations, while the inclusion of oleic acid in the PVA formulation resulted in a further 3-fold increase in loading efficiency. In vitro release studies demonstrate that the inclusion of lipid additives significantly alters release kinetics; release was most rapid and complete in the formulation containing oleic acid, while the addition of DOTAP and DOTMA significantly reduced release rates. Finally, the antimicrobial activity of each formulation was tested against Staphylococcus aureus and Bacillus cereus, with minimum inhibitory concentrations nearing or exceeding that of free rifampicin.


References

[1]  H. K. Makadia, S. J. Siegel, Polymers 2011, 3, 1377.
         | Crossref | GoogleScholarGoogle Scholar | 22577513PubMed |

[2]  M. Mir, N. Ahmed, A. ur Rehman, Colloids Surf. B Biointerfaces 2017, 159, 217.
         | Crossref | GoogleScholarGoogle Scholar | 28797972PubMed |

[3]  J. M. Anderson, M. S. Shive, Adv. Drug Deliv. Rev. 1997, 28, 5.
         | Crossref | GoogleScholarGoogle Scholar | 10837562PubMed |

[4]  D. K. Jensen, L. B. Jensen, S. Koocheki, L. Bengtson, D. Cun, H. M. Nielsen, C. Foged, J. Control. Release 2012, 157, 141.
         | Crossref | GoogleScholarGoogle Scholar | 21864597PubMed |

[5]  A. Kumar, P. Wonganan, M. A. Sandoval, X. Li, S. Zhu, Z. Cui, J. Control. Release 2012, 163, 230.
         | Crossref | GoogleScholarGoogle Scholar | 22921518PubMed |

[6]  F. Fay, D. J. Quinn, B. F. Gilmore, P. A. McCarron, C. J. Scott, Biomaterials 2010, 31, 4214.
         | Crossref | GoogleScholarGoogle Scholar | 20185174PubMed |

[7]  A. Giteau, M.-C. Venier-Julienne, A. Aubert-Pouëssel, J.-P. Benoit, Int. J. Pharm. 2008, 350, 14.
         | Crossref | GoogleScholarGoogle Scholar | 18162341PubMed |

[8]  R. C. Mundargi, V. R. Babu, V. Rangaswamy, P. Patel, T. M. Aminabhavi, J. Control. Release 2008, 125, 193.
         | Crossref | GoogleScholarGoogle Scholar | 18083265PubMed |

[9]  J.-W. Nah, Y.-D. Jeong, J.-J. Koh, Korean J. Chem. Eng. 2000, 17, 230.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  E. Chiesa, R. Dorati, T. Modena, B. Conti, I. Genta, Int. J. Pharm. 2018, 536, 165.
         | Crossref | GoogleScholarGoogle Scholar | 29175645PubMed |

[11]  A. Alshamsan, Saudi Pharm. J. 2014, 22, 219.
         | Crossref | GoogleScholarGoogle Scholar | 25061407PubMed |

[12]  M. López-López, A. Fernández-Delgado, M. L. Moyá, D. Blanco-Arévalo, C. Carrera, R. R. de la Haba, A. Ventosa, E. Bernal, P. López-Cornejo, Pharmaceutics 2019, 11, 57.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  T. Govender, S. Stolnik, M. C. Garnett, L. Illum, S. S. Davis, J. Control. Release 1999, 57, 171.
         | Crossref | GoogleScholarGoogle Scholar | 9971898PubMed |

[14]  S. Dhar, F. X. Gu, R. Langer, O. C. Farokhzad, S. J. Lippard, Proc. Natl. Acad. Sci. USA 2008, 105, 17356.
         | Crossref | GoogleScholarGoogle Scholar | 18978032PubMed |

[15]  D. E. Owens, N. A. Peppas, Int. J. Pharm. 2006, 307, 93.
         | Crossref | GoogleScholarGoogle Scholar | 16303268PubMed |

[16]  T. S. J. Kashi, S. Eskandarion, M. Esfandyari-Manesh, S. M. A. Marashi, N. Samadi, S. M. Fatemi, F. Atyabi, S. Eshraghi, R. Dinarvand, Int. J. Nanomedicine 2012, 7, 221.

[17]  L. Zhang, J. M. Chan, F. X. Gu, J.-W. Rhee, A. Z. Wang, A. F. Radovic-Moreno, F. Alexis, R. Langer, O. C. Farokhzad, ACS Nano 2008, 2, 1696.
         | Crossref | GoogleScholarGoogle Scholar | 19206374PubMed |

[18]  S. Krishnamurthy, M. Gnanasammandhan, C. Xie, K. Huang, M. Cui, J. Chan, Nanoscale 2016, 8, 6981.
         | Crossref | GoogleScholarGoogle Scholar | 26975904PubMed |

[19]  S. Díez, I. Miguéliz, C. T. De Ilarduya, Cell. Mol. Biol. Lett. 2009, 14, 347.
         | Crossref | GoogleScholarGoogle Scholar | 19194666PubMed |

[20]  S. Díez, G. Navarro, C. T. de ILarduya, J. Gene Med. 2009, 11, 38.
         | Crossref | GoogleScholarGoogle Scholar | 19021130PubMed |

[21]  C. E. Astete, C. M. Sabliov, J. Biomater. Sci. Polym. Ed. 2006, 17, 247.
         | Crossref | GoogleScholarGoogle Scholar | 16689015PubMed |

[22]  H. Xie, J. W. Smith, J. Nanobiotechnology 2010, 8, 18.
         | Crossref | GoogleScholarGoogle Scholar | 20707919PubMed |

[23]  K. Abstiens, A. M. Goepferich, J. Drug Deliv. Sci. Technol. 2019, 49, 433.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  R. Karnik, F. Gu, P. Basto, C. Cannizzaro, L. Dean, W. Kyei-Manu, R. Langer, O. C. Farokhzad, Nano Lett. 2008, 8, 2906.
         | Crossref | GoogleScholarGoogle Scholar | 18656990PubMed |

[25]  H. Pinto-Alphandary, A. Andremont, P. Couvreur, Int. J. Antimicrob. Agents 2000, 13, 155.
         | Crossref | GoogleScholarGoogle Scholar | 10724019PubMed |

[26]  T. G. Meikle, A. Zabara, L. Waddington, F. Separovic, C. Drummond, C. E. Conn, Colloids Surf. B Biointerfaces 2017, 152, 143.
         | Crossref | GoogleScholarGoogle Scholar | 28107705PubMed |

[27]  A. F. Radovic-Moreno, T. K. Lu, V. A. Puscasu, C. J. Yoon, R. Langer, O. C. Farokhzad, ACS Nano 2012, 6, 4279.
         | Crossref | GoogleScholarGoogle Scholar | 22471841PubMed |

[28]  M. Elshikh, S. Ahmed, S. Funston, P. Dunlop, M. McGaw, R. Marchant, I. M. Banat, Biotechnol. Lett. 2016, 38, 1015.
         | Crossref | GoogleScholarGoogle Scholar | 26969604PubMed |

[29]  P. Fonte, S. Soares, A. Costa, J. C. Andrade, V. Seabra, S. Reis, B. Sarmento, Biomatter 2012, 2, 329.
         | Crossref | GoogleScholarGoogle Scholar | 23507897PubMed |

[30]  B. Lu, X. Lv, Y. Le, Polymers 2019, 11, 304.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  K. Avgoustakis, A. Beletsi, Z. Panagi, P. Klepetsanis, A. Karydas, D. Ithakissios, J. Control. Release 2002, 79, 123.
         | Crossref | GoogleScholarGoogle Scholar | 11853924PubMed |

[32]  S. D. Allison, Expert Opin. Drug Deliv. 2008, 5, 615.
         | Crossref | GoogleScholarGoogle Scholar | 18532918PubMed |

[33]  J. M. Andrews, J. Antimicrob. Chemother. 2001, 48, 5.
         | Crossref | GoogleScholarGoogle Scholar | 11420333PubMed |

[34]  A. J. Vogler, J. D. Busch, S. Percy-Fine, C. Tipton-Hunton, K. L. Smith, P. Keim, Antimicrob. Agents Chemother. 2002, 46, 511.
         | Crossref | GoogleScholarGoogle Scholar | 11796364PubMed |