Gold-Catalysed Oxidative Cycloisomerisation of 1,6-Diyne Acetates to 1-Naphthyl Ketones
Andrew Thomas Holm A , Sanatan Nayak A and Philip Wai Hong Chan A B CA School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
B Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
C Corresponding author. Email: phil.chan@monash.edu
Australian Journal of Chemistry 72(11) 881-889 https://doi.org/10.1071/CH19330
Submitted: 16 July 2019 Accepted: 27 August 2019 Published: 14 October 2019
Abstract
A synthetic method to prepare 1-naphthyl ketones from gold(i)-catalysed oxidative cycloisomerisation of 1,6-diyne acetates is described. The proposed mechanism involves cyclopropenation–cycloreversion of the 1,6-diyne motif initiated by a 1,2-acyloxy migration. This is followed by nucleophilic attack of the ensuing gold carbenoid species by a molecule of water and autoxidation to give the aromatic product.
References
[1] For selected reviews on gold catalysis, see refs [2–10].[2] K. Holzschneider, S. F. Kirsch, Isr. J. Chem. 2018, 58, 596.
| Crossref | GoogleScholarGoogle Scholar |
[3] Y. Wei, M. Shi, ACS Catal. 2016, 6, 2515.
| Crossref | GoogleScholarGoogle Scholar |
[4] D. Pflästerer, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 1331.
| Crossref | GoogleScholarGoogle Scholar | 26673389PubMed |
[5] R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028.
| Crossref | GoogleScholarGoogle Scholar | 25844920PubMed |
[6] Gold Catalysis: A Homogeneous Approach (Eds F. D. Toste, V. Michelet) 2014 (Imperial College Press: London).
[7] A. S. K. Hashmi, Acc. Chem. Res. 2014, 47, 864.
| Crossref | GoogleScholarGoogle Scholar |
[8] Modern Gold-Catalyzed Synthesis (Eds A. S. K. Hashmi, F. D. Toste) 2012 (Wiley-VCH: Weinheim).
[9] F. Miege, C. Meyer, J. Cossy, Beilstein J. Org. Chem. 2011, 7, 717.
| Crossref | GoogleScholarGoogle Scholar | 21804867PubMed |
[10] A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208.
| Crossref | GoogleScholarGoogle Scholar | 19847352PubMed |
[11] For selected reviews on gold-catalysed cyclisation of propargyl esters, see refs [12–17].
[12] A. M. Asiri, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 4471.
| Crossref | GoogleScholarGoogle Scholar | 27385433PubMed |
[13] D. P. Day, P. W. H. Chan, Adv. Synth. Catal. 2016, 358, 1368.
| Crossref | GoogleScholarGoogle Scholar |
[14] L. Fensterbank, M. Malacria, Acc. Chem. Res. 2014, 47, 953.
| Crossref | GoogleScholarGoogle Scholar | 24564512PubMed |
[15] B. J. Ayers, P. W. H. Chan, Synlett 2015, 1305.
[16] A. S. K. Hashmi, Angew. Chem. Int. Ed. 2010, 49, 5232.
| Crossref | GoogleScholarGoogle Scholar |
[17] E. Jimenez-Nunez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326.
| Crossref | GoogleScholarGoogle Scholar | 18636778PubMed |
[18] For selected recent examples of gold-catalysed carbocyclic synthesis, see refs [19–29].
[19] M. Mathiew, J. K. Tan, P. W. H. Chan, Angew. Chem. Int. Ed. 2018, 57, 14235.
| Crossref | GoogleScholarGoogle Scholar |
[20] P. T. Bohan, F. D. Toste, J. Am. Chem. Soc. 2017, 139, 11016.
| Crossref | GoogleScholarGoogle Scholar | 28771334PubMed |
[21] S. K. Thummanapelli, S. Hosseyni, Y. Su, N. G. Akhmedov, X. Shi, Chem. Commun. 2016, 7687.
| Crossref | GoogleScholarGoogle Scholar |
[22] W. Rao, J. W. Boyle, P. W. H. Chan, Chem. – Eur. J. 2016, 22, 6532.
| Crossref | GoogleScholarGoogle Scholar | 26945940PubMed |
[23] X. Chen, D. P. Day, W. T. Teo, P. W. H. Chan, Org. Lett. 2016, 18, 5936.
| Crossref | GoogleScholarGoogle Scholar | 27791382PubMed |
[24] E. Rettenmeier, M. M. Hansmann, A. Ahrens, K. Rubenacker, T. Saboo, J. Massholder, C. Meier, M. Rudolph, F. Rominger, A. S. Hashmi, Chem. – Eur. J. 2015, 21, 14401.
| Crossref | GoogleScholarGoogle Scholar | 26291466PubMed |
[25] W. Rao, D. Susanti, B. J. Ayers, P. W. H. Chan, J. Am. Chem. Soc. 2015, 137, 6350.
| Crossref | GoogleScholarGoogle Scholar | 25905645PubMed |
[26] J. Yan, G. L. Tay, C. Neo, B. R. Lee, P. W. H. Chan, Org. Lett. 2015, 17, 4176.
| Crossref | GoogleScholarGoogle Scholar | 26291118PubMed |
[27] W. Zi, H. Wu, F. D. Toste, J. Am. Chem. Soc. 2015, 137, 3225.
| Crossref | GoogleScholarGoogle Scholar | 25710515PubMed |
[28] W. Rao, M. J. Koh, D. Li, H. Hirao, P. W. H. Chan, J. Am. Chem. Soc. 2013, 135, 7926.
| Crossref | GoogleScholarGoogle Scholar | 23627597PubMed |
[29] T. Lauterbach, S. Gatzweiler, P. Nösel, M. Rudolph, F. Rominger, A. S. K. Hashmi, Adv. Synth. Catal. 2013, 355, 2481.
| Crossref | GoogleScholarGoogle Scholar |
[30] For selected examples of gold-catalysed heterocyclic synthesis, see refs [21], [26] and [31–46].
[31] X. Cheng, Z. Wang, C. D. Quintanilla, L. Zhang, J. Am. Chem. Soc. 2019, 141, 3787.
| Crossref | GoogleScholarGoogle Scholar | 30789268PubMed |
[32] M. Bao, X. Wang, L. Qiu, W. Hu, P. W. H. Chan, X. Xu, Org. Lett. 2019, 21, 1813.
| Crossref | GoogleScholarGoogle Scholar | 30840467PubMed |
[33] D. Allegue, J. González, S. Fernández, J. Santamaría, A. Ballesteros, Adv. Synth. Catal. 2019, 361, 758.
| Crossref | GoogleScholarGoogle Scholar |
[34] M. E. Muratore, A. I. Konovalov, H. Armengol-Relats, A. M. Echavarren, Chem. – Eur. J. 2018, 24, 15613.
| Crossref | GoogleScholarGoogle Scholar | 30066978PubMed |
[35] J. Zhao, W. Xu, X. Xie, N. Sun, X. Li, Y. Liu, Org. Lett. 2018, 20, 5461.
| Crossref | GoogleScholarGoogle Scholar | 30102048PubMed |
[36] J. Jin, Y. Zhao, E. M. L. Sze, P. Kothandaraman, P. W. H. Chan, Adv. Synth. Catal. 2018, 360, 4744.
| Crossref | GoogleScholarGoogle Scholar |
[37] Y.-C. Hsu, S.-A. Hsieh, P.-H. Li, R.-S. Liu, Chem. Commun. 2018, 2114.
| Crossref | GoogleScholarGoogle Scholar |
[38] X. Chen, J. T. Merrett, P. W. H. Chan, Org. Lett. 2018, 20, 1542.
| Crossref | GoogleScholarGoogle Scholar | 29481090PubMed |
[39] B. Zhang, T. Wang, Z. Zhang, J. Org. Chem. 2017, 82, 11644.
| Crossref | GoogleScholarGoogle Scholar | 28967246PubMed |
[40] W. Rao, Sally, S. N. Berry, P. W. H. Chan, Chem. – Eur. J. 2014, 20, 13174.
| Crossref | GoogleScholarGoogle Scholar | 25113644PubMed |
[41] W. Rao, P. W. H. Chan, Chem. – Eur. J. 2014, 20, 713.
| Crossref | GoogleScholarGoogle Scholar | 24323953PubMed |
[42] W. T. Teo, W. Rao, M. J. Koh, P. W. H. Chan, J. Org. Chem. 2013, 78, 7508.
| Crossref | GoogleScholarGoogle Scholar | 23883133PubMed |
[43] C. Gronnier, G. Boissonnat, F. Gagosz, Org. Lett. 2013, 15, 4234.
| Crossref | GoogleScholarGoogle Scholar | 23909764PubMed |
[44] W. Rao, M. J. Koh, P. Kothandaraman, P. W. H. Chan, J. Am. Chem. Soc. 2012, 134, 10811.
| Crossref | GoogleScholarGoogle Scholar | 22663059PubMed |
[45] A. S. K. Hashmi, M. Rudolph, H.-U. Siehl, M. Tanaka, J. W. Bats, W. Frey, Chem. – Eur. J. 2008, 14, 3703.
| Crossref | GoogleScholarGoogle Scholar |
[46] A. S. K. Hashmi, M. Wölfle, F. Ata, M. Hamzic, R. Salathé, W. Frey, Adv. Synth. Catal. 2006, 348, 2501.
| Crossref | GoogleScholarGoogle Scholar |
[47] For a review on the gold-catalysed chemistry of cyclopropenes, see ref. [9]. For selected examples, see refs [26], [28], [29], [41] and [48–54].
[48] N. A. Rajabi, M. J. Atashgah, R. BabaAhmadi, C. Hyland, A. Ariafard, J. Org. Chem. 2013, 78, 9553.
| Crossref | GoogleScholarGoogle Scholar | 23977881PubMed |
[49] P. C. Young, M. S. Hadfield, L. Arrowsmith, K. M. Macleod, R. J. Mudd, J. A. Jordan-Hore, A.-L. Lee, Org. Lett. 2012, 14, 898.
| Crossref | GoogleScholarGoogle Scholar | 22272604PubMed |
[50] M. S. Hadfield, A. L. Lee, Chem. Commun. 2011, 1333.
| Crossref | GoogleScholarGoogle Scholar |
[51] E. Seraya, E. Slack, A. Ariafard, B. F. Yates, C. J. T. Hyland, Org. Lett. 2010, 12, 4768.
| Crossref | GoogleScholarGoogle Scholar | 20873827PubMed |
[52] M. S. Hadfield, J. T. Bauer, P. E. Glen, A. L. Lee, Org. Biomol. Chem. 2010, 8, 4090.
| Crossref | GoogleScholarGoogle Scholar | 20623054PubMed |
[53] M. S. Hadfield, A. L. Lee, Org. Lett. 2010, 12, 484.
| Crossref | GoogleScholarGoogle Scholar | 20050603PubMed |
[54] J. T. Bauer, M. S. Hadfield, A. L. Lee, Chem. Commun. 2008, 6405.
| Crossref | GoogleScholarGoogle Scholar |
[55] For recent reviews on the chemistry of cyclopropenes, see [56–58].
[56] I. Marek, S. Simaan, A. Masarwa, Angew. Chem. Int. Ed. 2007, 46, 7364.
| Crossref | GoogleScholarGoogle Scholar |
[57] M. Rubin, M. Rubina, V. Gevorgyan, Chem. Rev. 2007, 107, 3117.
| Crossref | GoogleScholarGoogle Scholar | 17622181PubMed |
[58] M. Rubin, M. Rubina, V. Gevorgyan, Synthesis 2006, 1221.
[59] For precedence of water serving as the oxygen atom source, see refs [39], [45] and [46].