Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Carbon Dioxide Activation by a Palladium Terminal Imido Complex

Stephen J. Goodner A , Annette Grünwald A , Frank W. Heinemann A and Dominik Munz A B
+ Author Affiliations
- Author Affiliations

A Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Institute for General and Inorganic Chemistry, Egerlandstraße 1, 91058 Erlangen, Germany.

B Corresponding author. Email: dominik.munz@fau.de

Australian Journal of Chemistry 72(11) 900-903 https://doi.org/10.1071/CH19323
Submitted: 15 July 2019  Accepted: 09 August 2019   Published: 12 September 2019

Abstract

We recently reported the first example of a palladium(ii) terminal imido complex. We proposed that this complex features exceptional high nucleophilicity at the nitrogen atom and a peculiar zwitterionic electronic structure with an anti-bonding highest-occupied molecular orbital (HOMO). This complex swiftly activated moderately acidic CH, OH, and NH bonds and also reacted with dihydrogen. However, unambiguous nucleophilic reactivity with substrates not featuring a hydrogen atom could not be observed. Herein, we now show that this nucleophilic complex also reacts with CO2 to give a ring-strained four-membered palladium(ii) carbamate complex. Remarkably, the same product is obtained in the reaction of the related bisamido complex, albeit at a slower reaction rate. Density functional theory calculations indicate that the addition of CO2 does not proceed via initial 1,2-addition across the Pd–N bond, but instead through nucleophilic attack by the imido (amido respectively) nitrogen atom.


References

[1]  K. Ray, F. Heims, F. F. Pfaff, Eur. J. Inorg. Chem. 2013, 3784.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  P. R. Sharp, J. Chem. Soc., Dalton Trans. 2000, 2647.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  A. R. Eikey, M. M. Abu-Omar, Coord. Chem. Rev. 2003, 243, 83.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  J. F. Berry, Comments Inorg. Chem. 2009, 30, 28.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  L. H. Gade, P. Mountford, Coord. Chem. Rev. 2001, 216–217, 65.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  C. T. Saouma, J. C. Peters, Coord. Chem. Rev. 2011, 255, 920.
         | Crossref | GoogleScholarGoogle Scholar | 21625302PubMed |

[7]  J. R. Winkler, H. B. Gray, in Molecular Electronic Structures of Transition Metal Complexes I. Structure and Bonding (Eds D. Mingos, P. Day, J. Dahl) 2011, Vol. 142, pp. 17–28 (Springer: Berlin).

[8]  J. M. Mayer, Comments Inorg. Chem. 1988, 8, 125.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  D. J. Mindiola, G. L. Hillhouse, J. Am. Chem. Soc. 2001, 123, 4623.
         | Crossref | GoogleScholarGoogle Scholar | 11457258PubMed |

[10]  N. D. Harrold, G. L. Hillhouse, Chem. Sci. 2013, 4, 4011.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  C. A. Laskowski, A. J. M. Miller, G. L. Hillhouse, T. R. Cundari, J. Am. Chem. Soc. 2011, 133, 771.
         | Crossref | GoogleScholarGoogle Scholar | 21175213PubMed |

[12]  V. M. Iluc, A. J. Miller, J. S. Anderson, M. J. Monreal, M. P. Mehn, G. L. Hillhouse, J. Am. Chem. Soc. 2011, 133, 13055.
         | Crossref | GoogleScholarGoogle Scholar | 21797224PubMed |

[13]  P. J. Tiong, A. Nova, L. R. Groom, A. D. Schwarz, J. D. Selby, A. D. Schofield, E. Clot, P. Mountford, Organometallics 2011, 30, 1182.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  A. E. Guiducci, C. L. Boyd, E. Clot, P. Mountford, Dalton Trans. 2009, 5960.
         | Crossref | GoogleScholarGoogle Scholar | 19623397PubMed |

[15]  S. R. Dubberley, A. Friedrich, D. A. Willman, P. Mountford, U. Radius, Chem. – Eur. J. 2003, 9, 3634.
         | Crossref | GoogleScholarGoogle Scholar | 12898691PubMed |

[16]  Z. J. Tonzetich, R. R. Schrock, P. Müller, Organometallics 2006, 25, 4301.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  C. L. Boyd, E. Clot, A. E. Guiducci, P. Mountford, Organometallics 2005, 24, 2347.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  B. D. Ward, G. Orde, E. Clot, A. R. Cowley, L. H. Gade, P. Mountford, Organometallics 2005, 24, 2368.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  B. D. Ward, E. Clot, S. R. Dubberley, L. H. Gade, P. Mountford, Chem. Commun. 2002, 2618.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  D. J. Mindiola, R. Waterman, V. M. Iluc, T. R. Cundari, G. L. Hillhouse, Inorg. Chem. 2014, 53, 13227.
         | Crossref | GoogleScholarGoogle Scholar | 25437507PubMed |

[21]  D. S. Glueck, J. Wu, F. J. Hollander, R. G. Bergman, J. Am. Chem. Soc. 1991, 113, 2041.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. Kinauer, M. Diefenbach, H. Bamberger, S. Demeshko, E. J. Reijerse, C. Volkmann, C. Würtele, J. van Slageren, B. de Bruin, M. C. Holthausen, S. Schneider, Chem. Sci. 2018, 9, 4325.
         | Crossref | GoogleScholarGoogle Scholar | 29780564PubMed |

[23]  D. Munz, Chem. Sci. 2018, 9, 1155.
         | Crossref | GoogleScholarGoogle Scholar | 29675160PubMed |

[24]  A. Grünwald, D. Munz, J. Organomet. Chem. 2018, 864, 26.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  A. Grünwald, N. Orth, A. Scheurer, F. W. Heinemann, A. Pöthig, D. Munz, Angew. Chem. Int. Ed. 2018, 57, 16228.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  (a) For the first report of a CAAC, see: V. Lavallo, Y. Canac, C. Präsang, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2005, 44, 5705.[Angew. Chem. 2005, 117, 5851].
         | Crossref | GoogleScholarGoogle Scholar |
      (b) For a leading review on CAACs, see: M. Melaimi, R. Jazzar, M. Soleilhavoup, G. Bertrand, Angew. Chem. Int. Ed. 2017, 56, 10046.[Angew. Chem. 2017, 129, 10180].
         | Crossref | GoogleScholarGoogle Scholar |
      (c) For the synthesis of donor-substituted CAACs, see: J. Chu, D. Munz, R. Jazzar, M. Melaimi, G. Bertrand, J. Am. Chem. Soc. 2016, 138, 7884.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. Munz, J. Chu, R. Jazzar, M. Melaimi, G. Bertrand, Angew. Chem. Int. Ed. 2016, 55, 12886.[Angew. Chem. 2016, 128, 13078].
         | Crossref | GoogleScholarGoogle Scholar |
      (e) For a concise and recent review on the electronic properties of carbene ligands, see: D. Munz, Organometallics 2018, 37, 275.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  M. Aresta, R. Gobetto, E. Quaranta, I. Tommasi, Inorg. Chem. 1992, 31, 4286.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365.
         | Crossref | GoogleScholarGoogle Scholar | 17564481PubMed |

[29]  S. Liu, X. Wang, Curr. Opin. Green Sustain. Chem. 2017, 3, 61.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  D. Hildebrandt, D. Glasser, B. Hausberger, B. Patel, B. J. Glasser, Science 2009, 323, 1680.
         | Crossref | GoogleScholarGoogle Scholar | 19325103PubMed |