Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Influence of Sodium Dodecyl Sulfate on the Microstructure and Electrochromic Performance of an Electrodeposited Nickel Oxide Film

Junda Mao A B , Xiang Duan C and Aihua Yao A B D
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai 200092, China.

B School of Materials Science and Engineering, Tongji University, Shanghai 200092, China.

C China Development Bank, Jiangxi Branch, Nanchang, Jiangxi 220038, China.

D Corresponding author. Email: aihyao@126.com

Australian Journal of Chemistry 72(12) 957-963 https://doi.org/10.1071/CH19290
Submitted: 24 June 2019  Accepted: 17 September 2019   Published: 17 October 2019

Abstract

Nickel oxide (NiO) films were deposited on indium tin oxide (ITO) coated glass substrates using a potentiostatic electrodeposition method from Ni(NO3)2 aqueous solution containing the surfactant sodium dodecyl sulfate (SDS). The microstructure, morphology, and electrochromic performance of the NiO films were investigated. Our results showed that the addition of SDS inhibited the growth of NiO crystals, tailored the morphology of the films, and favoured their electrochromic performance. The NiO films deposited in the presence of 6 mM SDS exhibited excellent electrochromic performance in OH containing electrolytes (0.1 M KOH), with a high optical contrast of over 77 % at 550 nm, short switching time (5.62 s for bleaching and 7.34 s for coloration), and enhanced cycling durability.


References

[1]  W. Wei, W. Man, J. Ma, Y. Cao, Y. Deng, Adv. Electron. Mater. 2018, 4, 1800185.

[2]  D. Zhou, D. Xie, X. Xia, X. Wang, C. Gu, J. Tu, Sci. China Chem. 2017, 60, 1.

[3]  S. C. Wang, K. Y. Liu, J. L. Huang, Thin Solid Films 2011, 520, 1454.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  A. Šurca, B. Orel, B. Pihlar, P. Bukovec, J. Electroanal. Chem. 1996, 408, 83.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  F. Cao, G. X. Pan, X. H. Xia, P. S. Tang, H. F. Chen, Electrochim. Acta 2013, 111, 86.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  D. S. Choi, S. H. Han, H. Kim, S. H. Kang, Y. Kim, C.-M. Yang, T. Y. Kim, D. H. Yoon, W. S. Yang, Nanotechnology 2014, 25, 395702.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  L. D. Kadam, P. S. Patil, Sol. Energy Mater. Sol. Cells 2001, 69, 361.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  A. C. Sonavane, A. I. Inamdar, P. S. Shinde, H. P. Deshmukh, R. S. Patil, P. S. Patil, J. Alloys Compd. 2010, 489, 667.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  Y. F. Yuan, X. H. Xia, J. B. Wu, Y. B. Chen, J. L. Yang, S. Y. Guo, Electrochim. Acta 2011, 56, 1208.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  C. C. Liao, Sol. Energy Mater. Sol. Cells 2012, 99, 26.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  R. Vittal, H. Gomathi, K. J. Kim, Adv. Colloid Interface Sci. 2006, 119, 55.
         | Crossref | GoogleScholarGoogle Scholar | 16325752PubMed |

[12]  S. H. Baeck, K. S. Choi, T. F. Jaramillo, G. D. Stucky, E. W. McFarland, Adv. Mater. 2003, 15, 1269.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  M. Deepa, A. K. Srivastava, S. N. Sharma, S. M. Govind, Shivaprasad, Appl. Surf. Sci. 2008, 254, 2342.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  M. Deepa, M. Kar, D. P. Singh, A. K. Srivastava, S. Ahmad, Sol. Energy Mater. Sol. Cells 2008, 92, 170.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  S. Lal, D. Gautam, K. M. Razeeb, ECS J. Solid State Sci. Technol. 2017, 6, N3017.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  Z. G. Hou, X. Q. Zhang, X. N. Li, Y. C. Zhu, J. W. Liang, Y. T. Qian, J. Mater. Chem. 2017, 5, 730.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  N. S. McIntyre, M. G. Cook, Anal. Chem. 1975, 47, 2208.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, R. St. C. Smart, Surf. Interface Anal. 2009, 41, 324.

[19]  M. M. Natile, A. Glisenti, Chem. Mater. 2002, 14, 4895.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  Q. Zhang, C. Zhang, J. Liang, P. Yin, Y. Tian, ACS Sustain. Chem.& Eng. 2017, 5, 3808.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  X. Pang, I. Zhitomirsky, M. Niewczas, Surf. Coat. Tech. 2005, 195, 138.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  K.-S. Choi, H. C. Lichtenegger, G. D. Stucky, E. W. McFarland, J. Am. Chem. Soc. 2002, 124, 12402.
         | Crossref | GoogleScholarGoogle Scholar | 12381168PubMed |

[23]  X. Gan, X. Gao, J. Qiu, X. Li, Appl. Surf. Sci. 2008, 254, 3839.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  A. J. More, R. S. Patil, D. S. Dalavi, S. S. Mali, C. K. Hong, M. G. Gang, J. H. Kim, P. S. Patil, Mater. Lett. 2014, 134, 298.
         | Crossref | GoogleScholarGoogle Scholar |