Understanding Cell Interactions Using Modular Nanoparticle Libraries*
Georgina K. Such A C and Angus P. R. Johnston BA Department of Chemistry, The University of Melbourne, Parkville, Vic. 3010, Australia.
B Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic. 3052, Australia.
C Corresponding author. Email: gsuch@unimelb.edu.au
Australian Journal of Chemistry 72(8) 595-599 https://doi.org/10.1071/CH19269
Submitted: 12 June 2019 Accepted: 15 July 2019 Published: 14 August 2019
Abstract
Nanoparticle delivery systems have significant potential to facilitate the delivery of novel therapeutics, such as proteins, DNA or small molecules. However, there are multiple biological barriers that need to be overcome to deliver the cargo in an active form. These challenges include evading clearance by the reticuloendothelial system, minimising adverse immune responses, targeting specific cells and tissues, and trafficking into the right compartment of the cell. In this account, we will discuss how nanoparticle structure can be tuned to optimise biological interactions and thus improve the ability of nanoparticles to overcome these barriers. The focus of this article will be on controlling cell targeting and trafficking within a cell, e.g. endosomal escape.
References
[1] D. Ma, Nanoscale 2014, 6, 6415.| Crossref | GoogleScholarGoogle Scholar | 24837409PubMed |
[2] G. K. Such, Y. Yan, A. P. R. Johnston, S. T. Gunawan, F. Caruso, Adv. Mater. 2015, 27, 2278.
| Crossref | GoogleScholarGoogle Scholar | 25728711PubMed |
[3] J. M. Caster, A. N. Patel, T. Zhang, A. Wang, WIREs Nanomed. Nanobiotechnol. 2017, 9, e1416.
| Crossref | GoogleScholarGoogle Scholar |
[4] D. Bobo, K. J. Robinson, J. Islam, K. J. Thurecht, S. R. Corrie, Pharm. Res. 2016, 33, 2373.
| Crossref | GoogleScholarGoogle Scholar | 27299311PubMed |
[5] H. Ledford, Nature 2018, 560, 291.
| Crossref | GoogleScholarGoogle Scholar | 30108348PubMed |
[6] S. Wilhelm, A. J. Travares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, W. C. W. Chan, Natl. Rev. 2016, 1, 16014.
[7] L. I. Selby, C. M. Cortez-Jugo, G. K. Such, A. P. R. Johnston, WIREs Nanomed. Nanobiotechn 2017, 9, e1452.
| Crossref | GoogleScholarGoogle Scholar |
[8] M. S. Shim, Y. J. Kwon, Adv. Drug Deliv. Rev. 2012, 64, 1046.
| Crossref | GoogleScholarGoogle Scholar | 22329941PubMed |
[9] J. Gilleron, W. Querbes, A. Zeigerer, A. Borodovsky, G. Marsico, U. Schubert, K. Manygoats, S. Seifert, C. Andree, M. Stöter, H. Epstein-Barash, L. Zhang, V. Koteliansky, K. Fitzgerald, E. Fava, M. Bickle, Y. Kalaidzidis, A. Akinc, M. Maier, M. Zerial, Nat. Biotechnol. 2013, 31, 638.
| Crossref | GoogleScholarGoogle Scholar | 23792630PubMed |
[10] M. Luo, H. Wang, Z. Wang, H. Cai, Z. Lu, Y. Li, M. Du, G. Huang, C. Wang, X. Chen, M. R. Poremba, J. Lea, A. E. Frankerl, Y.-X. Fin, Z. J. Chen, J. Gao, Nat. Nanotechnol. 2017, 12, 648.
| Crossref | GoogleScholarGoogle Scholar | 28436963PubMed |
[11] N. Deirram, C. Zhang, S. S. Kermaniyan, A. P. R. Johnston, G. K. Such, Macromol. Rapid Commun. 2019, 40, 1800917.
| Crossref | GoogleScholarGoogle Scholar | 30835923PubMed |
[12] Y. Wang, K. Zhou, G. Huang, C. Hensley, X. Huang, X. Ma, T. Zhao, B. D. Sumer, R. J. DeBerardinis, J. Gao, Nat. Mater. 2014, 13, 204.
| Crossref | GoogleScholarGoogle Scholar | 24317187PubMed |
[13] A. S. M. Wong, S. K. Mann, E. Czuba, A. Sahut, H. Liu, T. C. Suekama, T. Bickerton, A. P. R. Johnston, G. K. Such, Soft Matter 2015, 11, 2993.
| Crossref | GoogleScholarGoogle Scholar |
[14] N. Kongkatigumjorn, C. Cortez-Jugo, E. Czuba, A. S. M. Wong, R. Y. Hodgetts, A. P. R. Johnston, G. K. Such, Macromol. Biosci. 2017, 17, 1600248.
| Crossref | GoogleScholarGoogle Scholar | 27786422PubMed |
[15] N. Kongkatigumjorn, S. A. Smith, M. Chen, K. Fang, S. Yang, E. R. Gillies, A. P. R. Johnston, G. K. Such, ACS Appl. Nano Mater. 2018, 1, 3164.
| Crossref | GoogleScholarGoogle Scholar |
[16] K. I. Cupic, J. J. Rennick, A. P. R. Johnston, G. K. Such, Nanomedicine 2019, 14, 215.
| Crossref | GoogleScholarGoogle Scholar | 30511881PubMed |
[17] S. A. Smith, L. I. Selby, A. P. R. Johnston, G. K. Such, Bioconjug. Chem. 2019, 30, 263.
| Crossref | GoogleScholarGoogle Scholar | 30452233PubMed |
[18] J. T. Wilson, A. Postma, S. Keller, A. J. Convertine, G. Moad, E. Rizzardo, L. Meagher, J. Chiefari, P. S. Stayton, AAPS J. 2015, 17, 358.
| Crossref | GoogleScholarGoogle Scholar | 25501498PubMed |
[19] A. S. M. Wong, E. Czuba, M. Z. Chen, D. Yuen, K. I. Cupic, S. L. Yang, R. Y. Hodgetts, L. I. Selby, A. P. R. Johnston, G. K. Such, ACS Macro Lett. 2017, 6, 315.
| Crossref | GoogleScholarGoogle Scholar |
[20] S. K. Mann, A. Dufour, J. J. Glass, R. De Rose, S. J. Kent, G. K. Such, A. P. R. Johnston, Polym. Chem. 2016, 7, 6015.
| Crossref | GoogleScholarGoogle Scholar |
[21] K. W. Yong, D. Yuen, M. Z. Chen, C. J. H. Porter, A. P. R. Johnston, Nano Lett. 2019, 19, 1827.
| Crossref | GoogleScholarGoogle Scholar | 30773887PubMed |