Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Self-Assembly of Uniform Branched Gold Nanoparticles Induced by Using Thiol-Terminated Poly(ethylene glycol)

Wenfeng Jia A C and Junwen Wu B C
+ Author Affiliations
- Author Affiliations

A Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China.

B Sinopec Research Institute of Petroleum Exploration and Development, Beijing 100083, China.

C Corresponding authors. Email: jiawf@iccas.ac.cn; wujunwen@iccas.ac.cn

Australian Journal of Chemistry 72(11) 904-909 https://doi.org/10.1071/CH19236
Submitted: 27 May 2019  Accepted: 30 July 2019   Published: 15 August 2019

Abstract

Branched gold nanoparticles with a sufficiently monodisperse distribution of size and shape were successfully synthesised using a tree-type multi-amine-head surfactant (C18N3) with a 100 % yield using a seed-mediated method. C18N3 coated branched gold nanoparticles possess a positive zeta potential of ~40 eV, which can keep branched gold nanoparticles stable in aqueous solution for several months without precipitation and transfiguration. However, C18N3 molecules were partially replaced by thiol-terminated poly(ethylene glycol) (mPEG-SH), due to the branched morphology of the as prepared gold nanoparticles, to make branched gold nanoparticles passivated by the adsorbing polymer with a positive zeta potential (17 eV). The mPEG-SH passivated branched gold nanoparticles behaved as quasi-hard particles to overcome the restrictions of the rotational and positional degrees of freedom in neighbouring nanoparticles at high volume fractions, which favours the hydrophilic thiol-terminated poly(ethylene glycol) polymer passivated branched gold nanoparticles to self-arrange into close-packed 2D ensembles. Thus, the as prepared branched gold nanoparticles and their ensembles possess significant potential in bio-labelling, imaging, biosensing, therapeutic applications, and surface-enhanced Raman scattering.


References

[1]  P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, Acc. Chem. Res. 2008, 41, 1578.
         | Crossref | GoogleScholarGoogle Scholar | 18447366PubMed |

[2]  R. Sardar, A. M. Funston, P. Mulvaney, R. W. Murray, Langmuir 2009, 25, 13840.
         | Crossref | GoogleScholarGoogle Scholar | 19572538PubMed |

[3]  J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, P. Mulvaney, Coord. Chem. Rev. 2005, 249, 1870.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  I. Pastoriza-Santos, R. A. Alvarez-Puebla, L. M. Liz-Marzán, Eur. J. Inorg. Chem. 2010, 2010, 4288.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, Y. Xia, Acc. Chem. Res. 2008, 41, 1587.
         | Crossref | GoogleScholarGoogle Scholar | 18570442PubMed |

[6]  B. Lim, Y. Xia, Angew. Chem. Int. Ed. 2011, 50, 76.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  A. M. Schwartzberg, J. Z. Zhang, J. Phys. Chem. C 2008, 112, 10323.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  A. Guerrero-Martínez, S. Barbosa, I. Pastoriza-Santos, L. M. Liz-Marzán, Curr. Opin. Colloid Interface Sci. 2011, 16, 118.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, C. A. Mirkin, Chem. Rev. 2011, 111, 3736.
         | Crossref | GoogleScholarGoogle Scholar | 21648955PubMed |

[10]  Z. Nie, A. Petukhova, E. Kumacheva, Nat. Nanotechnol. 2010, 5, 15.
         | Crossref | GoogleScholarGoogle Scholar | 20032986PubMed |

[11]  D. Vanmaekelbergh, Nano Today 2011, 6, 419.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  R. A. Alvarez-Puebla, E. R. Zubarev, N. A. Kotov, L. M. Liz-Marzán, Nano Today 2012, 7, 6.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  A. Petukhova, J. Greener, K. Liu, D. Nykypanchuk, R. Nicolaÿ, K. Matyjaszewski, E. Kumacheva, Small 2012, 8, 731.
         | Crossref | GoogleScholarGoogle Scholar | 22228672PubMed |

[14]  C.-L. Zhang, K.-P. Lv, H.-P. Cong, S.-H. Yu, Small 2012, 8, 648.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, Chem. Rev. 2011, 111, 3913.
         | Crossref | GoogleScholarGoogle Scholar | 21542636PubMed |

[16]  J.-M. Kim, D.-W. Jung, G. Lee, G.-R. Yi, Macromol. Res. 2018, 26, 539.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  K. Miszta, J. de Graaf, G. Bertoni, D. Dorfs, R. Brescia, S. Marras, L. Ceseracciu, R. Cingolani, R. van Roij, M. Dijkstra, L. Manna, Nat. Mater. 2011, 10, 872.
         | Crossref | GoogleScholarGoogle Scholar | 21946613PubMed |

[18]  K. M. Schulz, S. Abb, R. Fernandes, M. Abb, A. G. Kanaras, O. L. Muskens, Langmuir 2012, 28, 8874.
         | Crossref | GoogleScholarGoogle Scholar | 22401603PubMed |

[19]  M. Mueller, M. Tebbe, D. V. Andreeva, M. Karg, R. A. Alvarez Puebla, N. Pazos Perez, A. Fery, Langmuir 2012, 28, 9168.
         | Crossref | GoogleScholarGoogle Scholar | 22381053PubMed |

[20]  W. Wang, W. Lu, L. Jiang, J. Phys. Chem. B 2008, 112, 1409.
         | Crossref | GoogleScholarGoogle Scholar | 18197654PubMed |

[21]  J. Henzie, M. Grünwald, A. Widmer-Cooper, P. L. Geissler, P. Yang, Nat. Mater. 2012, 11, 131.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  H. Li, Y. Yang, Y. Wang, W. Li, L. Bi, L. Wu, Chem. Commun. 2010, 46, 3750.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  P. Pallavicini, G. Chirico, M. Collini, G. Dacarro, A. Dona, L. D’Alfonso, A. Falqui, Y. Diaz-Fernandez, S. Freddi, B. Garofalo, A. Genovese, L. Sironi, A. Taglietti, Chem. Commun. 2011, 47, 1315.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  O. M. Bakr, B. H. Wunsch, F. Stellacci, Chem. Mater. 2006, 18, 3297.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  L.-C. Cheng, J.-H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R.-S. Liu, M. Hsiao, C.-H. Chen, L.-J. Her, D. P. Tsai, J. Mater. Chem. 2012, 22, 2244.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  X. Xia, M. Yang, Y. Wang, Y. Zheng, Q. Li, J. Chen, Y. Xia, ACS Nano 2012, 6, 512.
         | Crossref | GoogleScholarGoogle Scholar | 22148912PubMed |

[27]  T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, Y. Niidome, J. Control. Release 2006, 114, 343.
         | Crossref | GoogleScholarGoogle Scholar | 16876898PubMed |

[28]  H. Liao, J. H. Hafner, Chem. Mater. 2005, 17, 4636.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  B. Asadishad, M. Vosoughi, I. Alamzadeh, A. Tavakoli, J. Dispers. Sci. Technol. 2010, 31, 492.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  W. R. Glomm, J. Dispers. Sci. Technol. 2005, 26, 389.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  X. Kou, Z. Sun, Z. Yang, H. Chen, J. Wang, Langmuir 2009, 25, 1692.
         | Crossref | GoogleScholarGoogle Scholar | 19115849PubMed |