Synthesis and Structures of 1,1′,2-Tribromoferrocene, 1,1′,2,2′-Tetrabromoferrocene, 1,1′,2,2′-Tetrabromoruthenocene: Expanding the Range of Precursors for the Metallocene Chemist’s Toolkit
Ian R. Butler A D , Michael Beaumont A , Michael I. Bruce B , Natalia N. Zaitseva B , Jonathan A. Iggo A , Craig Robertson A , Peter N. Horton C and Simon J. Coles CA Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
B Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
C EPSRC National Crystallography Service, University of Southampton, Southampton, SO17 1BJ, UK.
D Corresponding author. Email: irbutler@liverpool.ac.uk
Australian Journal of Chemistry 74(3) 204-210 https://doi.org/10.1071/CH19184
Submitted: 6 August 2019 Accepted: 17 August 2020 Published: 28 October 2020
Abstract
The synthesis, characterisation, and isolation of 1,1′,2-tribromoferrocene and 1,1′,2,2′-tetrabromoferrocene, which are key synthons in ferrocene chemistry, are described. These compounds are prepared using α-halide assisted lithiation. The crystal structures of 1,1′,2-tribromoferrocene, 1,1′,2,2′-tetrabromoferrocene, 1,1′-dibromoruthenocene, and 1,1′,2,2′-tetrabromoruthenocene have been determined and are reported together with a brief discussion of the intramolecular forces involved in the crystal structures.
References
[1] Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science (Eds A. Togni, T. Hayashi) 1999 (Wiley-VCH: Weinheim).[2] Ferrocenes: Ligands, Materials and Biomolecules (Ed. P. Stepnicka) 2008 (John Wiley: Hoboken, NJ).
[3] D. Heijnen, F. Tosi, C. Vila, M. C. A. Stuart, P. H. Elsinga, W. Szymanski, B. L. Feringa, Angew. Chem. Int. Ed. 2017, 56, 3354.
| Crossref | GoogleScholarGoogle Scholar |
[4] Y. Kishimoto, S. Ishida, T. Iwamoto, Chem. Lett. 2016, 45, 235.
| Crossref | GoogleScholarGoogle Scholar |
[5] T. Sasamori, Y. Suzuki, N. Tokitoh, Organometallics 2014, 33, 6696.
| Crossref | GoogleScholarGoogle Scholar |
[6] M. D. Rausch, G. A. Moser, C. F. Meade, J. Organomet. Chem. 1973, 51, 1.
| Crossref | GoogleScholarGoogle Scholar |
[7] A. Shafir, M. P. Power, G. D. Whitener, J. Arnold, P. W. Miller, N. J. Long, Inorg. Synth. 2014, 36, 65.
| Crossref | GoogleScholarGoogle Scholar |
[8] H. Nie, L. Yao, B. Li, S. Zhang, W. Chen, Organometallics 2014, 33, 2109.
| Crossref | GoogleScholarGoogle Scholar |
[9] G. Ilyashenko, R. Al-Safadi, R. Donnan, R. Dubrovka, J. Pancholi, M. Watkinson, A. Whiting, RSC Adv. 2013, 3, 17081.
| Crossref | GoogleScholarGoogle Scholar |
[10] S. Bruna, J. Perles, D. Nieto, A. M. Gonzalez-Vadillo, I. Cuadrado, J. Organomet. Chem. 2014, 751, 769.
| Crossref | GoogleScholarGoogle Scholar |
[11] M. S. Inkpen, S. Du, M. Hildebrand, A. P. White, N. M. Harrison, T. Albrecht, N. J. Long, Organometallics 2015, 34, 5461.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. D. Rausch, D. J. Ciappenelli, J. Organomet. Chem. 1967, 10, 127.
| Crossref | GoogleScholarGoogle Scholar |
[13] M. Roemer, C. A. Nijhuis, Dalton Trans. 2014, 43, 11815.
| Crossref | GoogleScholarGoogle Scholar | 24999911PubMed |
[14] D. Astruc, Eur. J. Inorg. Chem. 2017, 6.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. C. Goeltz, C. P. Kubiak, Organometallics 2011, 30, 3908.
| Crossref | GoogleScholarGoogle Scholar |
[16] M. S. Inkpen, S. Du, M. Driver, T. Albrecht, N. J. Long, Dalton Trans. 2013, 42, 2813.
| Crossref | GoogleScholarGoogle Scholar | 23232493PubMed |
[17] I. R. Butler, M. G. B. Drew, Inorg. Chem. Commun. 1999, 2, 234.
| Crossref | GoogleScholarGoogle Scholar |
[18] I. R. Butler, Inorg. Chem. Commun. 2008, 11, 15.
| Crossref | GoogleScholarGoogle Scholar |
[19] C. A. Hnetinka, A. D. Hunter, M. Zeller, M. J. G. Lesley, Acta Crystallogr. 2004, E60, m1806.
| Crossref | GoogleScholarGoogle Scholar |
[20] S. Bernhartzeder, K. Sünkel, J. Organomet. Chem. 2012, 716, 146.
| Crossref | GoogleScholarGoogle Scholar |
[21] G. Laus, K. Wurst, W. Stolz, H. Schottenberger, Z. Kristallogr. – New Cryst. Struct. 2005, 220, 229.
| Crossref | GoogleScholarGoogle Scholar |
[22] Y.-H. Han, M. J. Heeg, C. H. Winter, Organometallics 1994, 13, 3009.
| Crossref | GoogleScholarGoogle Scholar |
[23] Z. Kaluski, A. I. Gusev, Yu. T. Struchkov, Bull. Acad Pol. Sci., Ser. Sci. Chim. 1972, 20, 875.
[24] P. V. Roling, M. D. Rausch, J. Organomet. Chem. 1977, 141, 195.
| Crossref | GoogleScholarGoogle Scholar |
[25] A. N. Nesmeyanov, E. G. Perevalova, O. A. Nesmeyanova, Dokl. Akad. Nauk SSSR 1955, 100, 1099.
[26] I. R. Butler, Inorg. Chem. Commun. 2008, 11, 484.
| Crossref | GoogleScholarGoogle Scholar |
[27] H. Butenschön, Synthesis 2018, 50, 3787.
| Crossref | GoogleScholarGoogle Scholar |
[28] D. A. Thomas, V. V. Ivanov, I. R. Butler, P. N. Horton, P. Meunier, J.-C. Hierso, Inorg. Chem. 2008, 47, 1607.
| Crossref | GoogleScholarGoogle Scholar | 18247541PubMed |
[29] I. R. Butler, M. G. B. Drew, C. H. Geenwell, E. Lewis, M. Plath, S. Mussig, J. Szewczyk, Inorg. Chem. Commun. 1999, 2, 576.
| Crossref | GoogleScholarGoogle Scholar |
[30] A. Zirakzadeh, A. Herlein, M. A. Gross, K. Mereiter, Y. Wang, W. Weissensteiner, Organometallics 2015, 34, 3820.
| Crossref | GoogleScholarGoogle Scholar | 26294806PubMed |
[31] G. Werner, H. Butenschön, Eur. J. Inorg. Chem. 2017, 378.
| Crossref | GoogleScholarGoogle Scholar |
[32] I. R. Butler, M. G. B. Drew, C. H. Greenwell, E. Lewis, M. Plath, S. Mussig, J. Szewczyk, Inorg. Chem. Commun. 1999, 2, 576.
| Crossref | GoogleScholarGoogle Scholar |
[33] I. R. Butler, Eur. J. Inorg. Chem. 2012, 4387.
| Crossref | GoogleScholarGoogle Scholar |
[34] G. Dayaker, A. Sreeshailam, F. Chevallier, T. Roisnel, P. R. Krishna, F. Mongin, Chem. Commun. 2010, 46, 2862.
| Crossref | GoogleScholarGoogle Scholar |
[35] A. Zirakzadeh, A. Herlein, M. A. Groß, K. Mereiter, Y. Wang, W. Weissensteiner, Organometallics 2015, 34, 3820.
| Crossref | GoogleScholarGoogle Scholar | 26294806PubMed |
[36] M. Tazi, W. Erb, Y. S. Halauko, O. A. Ivashkevich, V. E. Matulis, T. Roisnel, V. Dorcet, F. Mongin, Organometallics 2017, 36, 4770.
| Crossref | GoogleScholarGoogle Scholar |
[37] M. Tazi, M. Hedidi, W. Erb, Y. S. Halauko, O. A. Ivashkevich, V. E. Matulis, T. Roisnel, V. Dorcet, G. Bentabed-Ababsa, F. Mongin, Organometallics 2018, 37, 2207.
| Crossref | GoogleScholarGoogle Scholar |
[38] W. Erb, T. Roisnel, Chem. Commun. 2019, 55, 9132.
| Crossref | GoogleScholarGoogle Scholar |
[39] B. Jennewein, S. Kimpel, D. Thalheim, J. Klett, Chem. – Eur. J. 2018, 24, 7605.
| Crossref | GoogleScholarGoogle Scholar | 29529351PubMed |
[40] W. Clegg, K. W. Henderson, A. R. Kennedy, R. E. Mulvey, C. T. O’Hara, R. B. Rowlings, D. M. Tooke, Angew. Chem. Int. Ed. 2001, 40, 3902.
| Crossref | GoogleScholarGoogle Scholar |
[41] W. Clegg, E. Crosbie, S. H. Dale-Black, E. Hevia, G. W. Honeyman, A. R. Kennedy, R. E. Mulvey, D. L. Ramsay, S. D. Robertson, Organometallics 2015, 34, 2580.
| Crossref | GoogleScholarGoogle Scholar |
[42] P. C. Andrikopoulos, D. R. Armstrong, W. Clegg, C. J. Gilfillan, E. Hevia, A. R. Kennedy, R. E. Mulvey, C. T. O’Hara, J. A. Parkinson, D. M. Tooke, J. Am. Chem. Soc. 2004, 126, 11612.
| Crossref | GoogleScholarGoogle Scholar | 15366908PubMed |
[43] G. W. Honeyman, D. R. Armstrong, W. Clegg, E. Hevia, A. R. Kennedy, R. McLennan, S. A. Orr, J. A. Parkinson, D. L. Ramsay, S. D. Obertson, S. Towie, R. E. Mulvey, Chem. Sci. 2020, 11, 6510.
| Crossref | GoogleScholarGoogle Scholar |
[44] Y. Habata, S. Akabori, M. Sato, Bull. Chem. Soc. Jpn. 1985, 58, 3540.
| Crossref | GoogleScholarGoogle Scholar |
[45] CrystalClear- SM Expert 3.1 b27 2013 (Rigaku: The Woodlands, TX).
[46] CrysAlisPro Software System 2017 (Rigaku Oxford Diffraction: Yarnton, Oxford, UK).
[47] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar |
[48] G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3.
[49] G. M. Sheldrick, Acta Crystallogr. 2015, C27, 3.