n-Octyl (Thio)glycosides as Potential Cryoprotectants: Glass Transition Behaviour, Membrane Permeability, and Ice Recrystallization Inhibition Studies*
Rekha Raju A , Theresa Merl B , Madeleine K. Adam C , Emiliyan Staykov C , Robert N. Ben C , Gary Bryant A D and Brendan L. Wilkinson B DA Centre for Molecular and Nanoscale Physics, School of Science, RMIT University, Melbourne, Vic. 3000, Australia.
B School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
C Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
D Corresponding authors. Email: gary.bryant@rmit.edu.au; brendan.wilkinson@une.edu.au
Australian Journal of Chemistry 72(8) 637-643 https://doi.org/10.1071/CH19159
Submitted: 10 April 2019 Accepted: 25 July 2019 Published: 14 August 2019
Abstract
A series of eight n-octyl (thio)glycosides (1α, β–4α, β) with d-glucose or d-galactose-configured head groups and varying anomeric configuration were synthesized and evaluated for glass transition behaviour, membrane permeability, and ice recrystallization inhibition (IRI) activity. Of these, n-octyl β-d-glucopyranoside (2β) exhibited a high glass transition temperatures (Tg), both as a neat sample and 20 wt-% aqueous solution. Membrane permeability studies of this compound revealed cellular uptake to concentrations relevant to the inhibition of intracellular ice formation, thus presenting a promising lead candidate for further biophysical and cryopreservation studies. Compounds were also evaluated as ice recrystallization inhibitors; however, no detectable activity was observed for the newly tested compounds.
References
[1] J. G. Baust, D. Gao, J. M. Baust, Organogenesis 2009, 5, 90.| Crossref | GoogleScholarGoogle Scholar | 20046670PubMed |
[2] G. D. Elliott, S. Wang, B. J. Fuller, Cryobiology 2017, 76, 74.
| Crossref | GoogleScholarGoogle Scholar | 28428046PubMed |
[3] K. R. Diller, E. G. Cravalho, Cryobiology 1971, 7, 191.
| Crossref | GoogleScholarGoogle Scholar |
[4] C. Polge, A. U. Smith, A. S. Parkes, Nature 1949, 164, 666.
| Crossref | GoogleScholarGoogle Scholar | 18143360PubMed |
[5] (a) B. J. Fuller, Cryo Lett. 2004, 25, 375.
(b) R. Streczynski, H. Clark, L. M. Whelehan, S.-T. Ang, L. K. Hardstaff, B. Funnekotter, E. Bunn, C. A. Offord, K. D. Sommerville, R. L. Mancera, Aust. J. Bot. 2019, 67, 1.
| Crossref | GoogleScholarGoogle Scholar |
[6] K. B. Storey, J. M. Storey, Annu. Rev. Ecol. Syst. 1996, 27, 365.
| Crossref | GoogleScholarGoogle Scholar |
[7] L. P. Tarkowski, W. Van den Ende, Front. Plant Sci. 2015, 6, 203.
| Crossref | GoogleScholarGoogle Scholar | 25926837PubMed |
[8] B. Kent, T. Hauß, B. Demé, V. Cristiglio, T. Darwish, T. Hunt, G. Bryant, C. J. Garvey, Langmuir 2015, 31, 9134.
| Crossref | GoogleScholarGoogle Scholar | 26225718PubMed |
[9] T. Lenné, G. Bryant, R. Holcomb, K. L. Koster, Biochim. Biophys. Acta Biomembr. 2007, 1768, 1019.
| Crossref | GoogleScholarGoogle Scholar |
[10] K. R. Walters, A. S. Serianni, Y. Voituron, T. Sformo, B. M. Barnes, J. G. Duman, J. Comp. Physiol. B 2011, 181, 631.
| Crossref | GoogleScholarGoogle Scholar | 21279720PubMed |
[11] K. Imamura, K. Murrai, T. Korehisa, N. Shimizu, R. Yamahira, T. Matsuura, H. Tada, H. Imanaka, N. Ishida, K. Nakashini, J. Pharm. Sci. 2014, 103, 1628.
| Crossref | GoogleScholarGoogle Scholar | 24797557PubMed |
[12] G. Bendas, F. Wilhelm, W. Ritcher, P. Nuhn, Eur. J. Pharm. Sci. 1996, 4, 211.
| Crossref | GoogleScholarGoogle Scholar |
[13] M. F. Ross, T. Da Ros, F. H. Blaikie, T. A. Prime, C. M. Porteous, I. I. Serevina, V. P. Skulachev, H. G. Kjaergaard, R. A. J. Smith, M. P. Murphy, Biochem. J. 2006, 400, 199.
| Crossref | GoogleScholarGoogle Scholar | 16948637PubMed |
[14] M. P. Murphy, R. J. Murphy, R. J. Smith, Annu. Rev. Pharmacol. Toxicol. 2007, 47, 629.
| Crossref | GoogleScholarGoogle Scholar | 17014364PubMed |
[15] A. Abazari, L. G. Meimetis, G. Budin, S. S. Bale, R. Weissleder, M. Toner, PLoS One 2015, 10, e0130323.
| Crossref | GoogleScholarGoogle Scholar | 26115179PubMed |
[16] A. Eroglu, M. J. Russo, R. Bieganski, A. Fowler, S. Cheley, H. Bayley, M. Toner, Nat. Biotechnol. 2000, 18, 163.
| Crossref | GoogleScholarGoogle Scholar | 10657121PubMed |
[17] C. J. Capicciotti, M. Leclère, F. A. Perras, D. L. Bryce, H. Paulin, J. Harden, Y. Liuc, R. N. Ben, Chem. Sci. 2012, 3, 1408.
| Crossref | GoogleScholarGoogle Scholar |
[18] M. K. Adam, Y. Hu, J. S. Poisson, M. J. Pottage, R. N. Ben, B. L. Wilkinson, Carbohydr. Res. 2017, 439, 1.
| Crossref | GoogleScholarGoogle Scholar | 28011438PubMed |
[19] M. K. Adam, J. S. Poisson, Y. Hu, G. Prasannakumar, M. J. Pottage, R. N. Ben, B. L. Wilkinson, RSC Adv. 2016, 6, 39240.
| Crossref | GoogleScholarGoogle Scholar |
[20] C. J. Capicciotti, J. D. R. Kurach, T. R. Turner, R. S. Mancini, J. P. Acker, R. N. Ben, Sci. Rep. 2015, 5, 9692.
| Crossref | GoogleScholarGoogle Scholar | 25851700PubMed |
[21] C. J. Drummond, C. Fong, I. Krodkiewska, B. J. Boyd, I. J. A. Baker, in Novel Surfactants (Ed. K. Holmberg) 2003, Ch. 3, pp. 95–128 (Marcel Dekker: New York, NY).
[22] (a) S. Ogawa, K. Asakura, S. Osanai, Carbohydr. Res. 2010, 345, 2534.
| Crossref | GoogleScholarGoogle Scholar | 20889145PubMed |
(b) S. Ogawa, S. Osanai, Cryobiology 2007, 54, 173.
| Crossref | GoogleScholarGoogle Scholar |
[23] J. Schmidt-Lassen, T. K. Lindhorst, MedChemComm 2014, 5, 1218.
| Crossref | GoogleScholarGoogle Scholar |
[24] H. A. van Doren, R. van der Geest, R. M. Kellogg, H. Wynberg, Carbohydr. Res. 1989, 194, 71.
| Crossref | GoogleScholarGoogle Scholar |
[25] B. Hoffmann, W. Milius, G. Voss, M. Wunschel, S. van Smaalen, S. Diele, G. Platz, Carbohydr. Res. 1999, 323, 192.
| Crossref | GoogleScholarGoogle Scholar |
[26] S. Ogawa, S. Osanai, in Supercooling (Ed. P. Wilson) 2012, pp. 29–54 (IntechOpen: Rijeka, Croatia).
[27] S. Ogawa, Y. Ozaki, I. Takahashi, ChemPhysChem 2016, 17, 2808.
| Crossref | GoogleScholarGoogle Scholar | 27304203PubMed |
[28] S. Ogawa, K. Asakura, S. Osanai, Phys. Chem. Chem. Phys. 2012, 14, 16312.
| Crossref | GoogleScholarGoogle Scholar | 23133837PubMed |
[29] S. Ogawa, I. Takahashi, M. Koga, K. Asakura, S. Osanai, J. Oleo Sci. 2018, 67, 627.
| Crossref | GoogleScholarGoogle Scholar | 29628491PubMed |
[30] R. M. Garavito, S. Ferguson-Miller, J. Biol. Chem. 2001, 276, 32403.
| Crossref | GoogleScholarGoogle Scholar | 11432878PubMed |
[31] (a) P. Mazur, Am. J. Physiol. Cell Physiol. 1984, 247, C125.
| Crossref | GoogleScholarGoogle Scholar |
(b) J.-H. Wang, Cryobiology 2000, 41, 1.
| Crossref | GoogleScholarGoogle Scholar |
[32] C. J. Capicciotti, R. S. Mancini, T. R. Turner, T. Koyama, M. G. Alteen, M. Doshi, T. Inada, J. P. Acker, R. N. Ben, ACS Omega 2016, 1, 14656.
[33] A. K. Balcerzak, M. Febbraroa, R. N. Ben, RSC Adv. 2013, 3, 3232.
| Crossref | GoogleScholarGoogle Scholar |
[34] C. Stubbs, J. Lipecki, M. Gibson, Biomacromolecules 2017, 18, 295.
| Crossref | GoogleScholarGoogle Scholar | 27936601PubMed |
[35] M. K. Adam, C. Jarrett-Wilkins, M. Beards, E. Staykov, L. R. MacFarlane, T. D. M. Bell, J. M. Matthews, I. Manners, C. F. J. Faul, P. D. J. Moens, R. N. Ben, B. L. Wilkinson, Chem. – Eur. J. 2018, 24, 7834.
| Crossref | GoogleScholarGoogle Scholar | 29644728PubMed |
[36] R. Y. Tam, S. S. Ferreira, P. Czechura, J. L. Chaytor, R. N. Ben, J. Am. Chem. Soc. 2008, 130, 17494.
| Crossref | GoogleScholarGoogle Scholar | 19053462PubMed |