Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Structure and Stereochemistry of Adducts of Tris(dipivaloylmethanato)europium(iii), Eu(dpm)3, with Some Dipolar Aprotic Unidentate O-Donors

Eric J. Chan A , Jack M. Harrowfield A B D , Brian W. Skelton A , Alexandre N. Sobolev A and Allan H. White A C
+ Author Affiliations
- Author Affiliations

A School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Highway, Perth, WA 6009, Australia.

B Current address: Institut de Science et d’Ingenierie Supramoléculaires, Université de Strasbourg, 8, allée Gaspard Monge, 67083 Strasbourg, France.

C Deceased.

D Corresponding author. Email: harrowfield@unistra.fr

Australian Journal of Chemistry 73(6) 455-461 https://doi.org/10.1071/CH19135
Submitted: 24 March 2019  Accepted: 6 June 2019   Published: 18 July 2019

Abstract

Single crystal X-ray structural characterisations are reported for adducts of the form [(L-O)Eu(O,O′-dpm)3] obtained by the crystallisation of tris(dipivaloylmethanato)europium(iii) (dpm = [HC(C(tBu).CO)2]) from an array of dipolar aprotic oxygen-donor solvents L (L = N-methylpyrrolidinone (nmp), trimethylphosphate, (MeO)3PO, (tmp), hexamethylphosphoramide (hmpa), dimethylacetamide (dma), dimethyl sulfoxide (dmso), and the bidentate octamethylpyrophosphoramide (ompa). In all adducts, the resulting arrays contain seven-coordinate metal atoms, which adopt two different isomeric forms of the mono-capped trigonal prismatic stereochemistry, the L = dma and dmso adducts corresponding to one type, nmp and tmp the other. The adduct formed with ompa behaves as a pair of discrete metal environments bridged by the O-ompa-O′ ligand, thus; [(dpm-O,O′)3Eu(O-ompa-O′)Eu(O,O′-dpm)3], and is found in two forms, one in which both Eu environments is of the tmp type, the other of the dmso/dma type. In the hmpa adduct, the asymmetric unit of the structure is a disordered composite of both types. In none of the adducts is there any further solvation beyond coordination of a single L.


References

[1]  C. Pettinari, F. Marchetti, A. Drozdov, in Comprehensive Coordination Chemistry II (Eds J. A. McCleverty, T. Meyer) 2003, Vol. 1, Ch. 1.7, pp. 97–115 (Elsevier: London).

[2]  A. F. Cockerill, G. L. O. Davies, R. C. Harden, D. M. Rackham, Chem. Rev. 1973, 73, 553.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  T. J. Wenzel, Top. Curr. Chem. 2013, 341, 1.
         | Crossref | GoogleScholarGoogle Scholar | 23595365PubMed |

[4]  K. Binnemans, in Handbook on the Physics and Chemistry of the Rare Earths (Eds K. G. Geschneidner, Jr, J.-C. G. Bünzli, V. K. Pecharsky) 2005, Vol. 35, Ch. 225, pp. 107–208 (Elsevier B.V.: Amsterdam).

[5]  C. R. De Silva, J. R. Maeyer, A. Dawson, Z. Zheng, Polyhedron 2007, 26, 1229.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  W. Junhu, T. Masahi, K. Takafumi, T. Masuo, J. Rare Earths 2007, 25, 647.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  P. P. Lima, F. A. Almeida Paz, R. A. S. Ferreira, V. de Zea Bermudez, L. D. Carlos, Chem. Mater. 2009, 21, 5099.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  M. H. Baker, J. D. Dorweiler, A. N. Ley, R. D. Pike, S. M. Berry, Polyhedron 2009, 28, 188.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  V. Vallet, A. Fischer, Z. Szabo, I. Grenthe, Dalton Trans. 2010, 39, 7666.
         | Crossref | GoogleScholarGoogle Scholar | 20631967PubMed |

[10]  P. A. Stabnikov, G. I. Zharkova, A. I. Smolenkev, N. V. Perukhina, V. V. Krisyuk, J. Struct. Chem. 2011, 52, 560.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  X.-L. Wang, Inorg. Chim. Acta 2012, 387, 20.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  F. Pointillart, B. Le Guennic, O. Maury, S. Golhen, O. Cador, L. Ouahab, Inorg. Chem. 2013, 52, 1398.
         | Crossref | GoogleScholarGoogle Scholar | 23339398PubMed |

[13]  X.-L. Li, C.-L. Chen, J.-L. Kang, A.-L. Wang, P.-Y. Wang, H.-P. Xiao, Inorg. Chim. Acta 2013, 408, 78.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Z. Ahmed, K. Iftikhar, Inorg. Chem. 2015, 54, 11209.
         | Crossref | GoogleScholarGoogle Scholar | 26566173PubMed |

[15]  L.-R. Lin, X. Wang, G.-N. Wai, H.-H. Tang, H. Zhang, L.-H. Ma, Dalton Trans. 2016, 45, 14954.
         | Crossref | GoogleScholarGoogle Scholar | 27549432PubMed |

[16]  P. Martin-Ramos, L. C. de Jesus Pereira, J. T. Coutinho, F. Kaprowiak, New J. Chem. 2016, 40, 8251.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  L. Armelao, D. B. Dell’Amico, L. Belluci, G. Bottaro, S. Ciattini, L. Labella, G. Manfroni, F. Marchetti, C. A. Mattei, S. Samaritani, Eur. J. Inorg. Chem. 2018, 4421.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  H. Shen, A. S. Berezin, O. V. Antonova, V. V. Zvereva, I. V. Korolkov, N. V. Peruvkhina, S. A. Prokhorova, P. A. Stabnikov, J. Struct. Chem. 2018, 59, 676.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  L. Zhang, H. Ma, Z.-Q. Wang, Y.-M. Tian, Y.-Q. Zhang, H.-B. Sun, J. Mol. Struct. 2019, 1175, 686.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) N. Hasan, K. Iftikhar, New J. Chem. 2019, 43, 2479.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) N. Hasan, K. Iftikhar, New J. Chem. 2019, 43, 4391.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  J. J. Uebel, R. M. Wing, J. Am. Chem. Soc. 1972, 94, 8910.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  E. Bye, Acta Chem. Scand. 1974, 28A, 731.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  J. A. Cunningham, R. E. Sievers, Inorg. Chem. 1980, 19, 595.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  J. M. Harrowfield, B. W. Skelton, A. H. White, F. R. Wilner, Inorg. Chim. Acta 2004, 357, 2358.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  E. J. Chan, B. G. Cox, J. M. Harrowfield, M. I. Ogden, B. W. Skelton, A. H. White, Inorg. Chim. Acta 2004, 357, 2365.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  S. A. Cotton, J. Harrowfield, in The Rare Earth Elements: Fundamentals and Applications (Ed. D. A. Atwood) 2012, pp. 55–63 (John Wiley & Sons, Ltd: Chichester, UK).

[27]  D. Lundberg, I. Persson, L. Eriksson, P. D’Angelo, S. De Panfilis, Inorg. Chem. 2010, 49, 4420.and references therein
         | Crossref | GoogleScholarGoogle Scholar | 20397652PubMed |

[28]  P. Di Bernardo, A. Melchior, M. Tolazzi, P. L. Zanonato, Coord. Chem. Rev. 2012, 256, 328.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  D. L. Kepert, Progr. Inorg. Chem. 1979, 25, 41.

[30]  (a) K. Binnemans, Chem. Rev. 2009, 109, 4283.
         | Crossref | GoogleScholarGoogle Scholar | 19650663PubMed |
      (b) K. Binnemans, Coord. Chem. Rev. 2015, 295, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  Y. Hasegawa, Y. Kitagawa, T. Nakanishi, NPG Asia Mater. 2018, 10, 52.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  L. R. Melby, N. J. Rose, E. Abramson, J. C. Caris, J. Am. Chem. Soc. 1964, 86, 5117.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  (a) F. A. Cotton, P. Legzdins, Inorg. Chem. 1968, 7, 1777.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. Zalkin, D. H. Templeton, D. G. Karraker, Inorg. Chem. 1969, 8, 2680.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  (a) R. M. Wing, J. J. Uebel, K. K. Andersen, J. Am. Chem. Soc. 1973, 95, 6046.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S. J. S. Wasson, D. E. Sands, W. F. Wagner, Inorg. Chem. 1973, 12, 187.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. C. A. Boeyens, J. P. R. De Villiers, J. Cryst. Mol. Struct. 1971, 1, 297.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. S. Erasmus, J. C. A. Boeyens, J. Cryst. Mol. Struct. 1971, 1, 83.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) E. D. Watkins, J. A. Cunningham, T. Phillips, D. E. Sands, W. F. Wagner, Inorg. Chem. 1969, 8, 29.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. A. Cunningham, D. E. Sands, W. F. Wagner, M. F. Richardson, Inorg. Chem. 1969, 8, 22.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  A. F. Kirby, R. A. Palmer, Inorg. Chem. 1981, 20, 1030.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  A. Lennartson, M. Vestergren, M. Hakansson, Chem. – Eur. J. 2005, 11, 1757.
         | Crossref | GoogleScholarGoogle Scholar | 15669037PubMed |

[38]  J. Wang, M. Takahashi, M. Takeda, Bull. Chem. Soc. Jpn. 2002, 75, 735.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  E. S. Panin, S. B. Ivanov, V. Ya. Kavun, I. N. Botova, Koord. Khim. 1992, 18, 663.

[40]  (a) M. F. Richardson, P. W. R. Corfield, D. E. Sands, R. E. Sievers, Inorg. Chem. 1970, 9, 1632.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. A. Aslanov, V. M. Ionov, V. B. Rybakov, E. F. Korytnyi, L. I. Martynenko, Koord. Khim. 1978, 4, 1427.
      (c) N. P. Kuz’mina, A. T. Zoan, A. P. Pisarevskii, L. I. Martynenko, Y. T. Struchkov, Koord. Khim. 1994, 20, 707.
      (d) H. A. Luten, W. S. Rees, V. L. Goedken, Chem. Vap. Deposition 1996, 2, 149.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11, 19.
         | Crossref | GoogleScholarGoogle Scholar |

[42]     (a) S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, CrystalExplorer 2012 (University of Western Australia: Perth).
      (b) C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman, IUCrJ 2017, 4, 575.
         | Crossref | GoogleScholarGoogle Scholar |