Structure and Stereochemistry of Adducts of Tris(dipivaloylmethanato)europium(iii), Eu(dpm)3, with Some Dipolar Aprotic Unidentate O-Donors
Eric J. Chan A , Jack M. Harrowfield A B D , Brian W. Skelton A , Alexandre N. Sobolev A and Allan H. White A CA School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Highway, Perth, WA 6009, Australia.
B Current address: Institut de Science et d’Ingenierie Supramoléculaires, Université de Strasbourg, 8, allée Gaspard Monge, 67083 Strasbourg, France.
C Deceased.
D Corresponding author. Email: harrowfield@unistra.fr
Australian Journal of Chemistry 73(6) 455-461 https://doi.org/10.1071/CH19135
Submitted: 24 March 2019 Accepted: 6 June 2019 Published: 18 July 2019
Abstract
Single crystal X-ray structural characterisations are reported for adducts of the form [(L-O)Eu(O,O′-dpm)3] obtained by the crystallisation of tris(dipivaloylmethanato)europium(iii) (dpm = [HC(C(tBu).CO)2]−) from an array of dipolar aprotic oxygen-donor solvents L (L = N-methylpyrrolidinone (nmp), trimethylphosphate, (MeO)3PO, (tmp), hexamethylphosphoramide (hmpa), dimethylacetamide (dma), dimethyl sulfoxide (dmso), and the bidentate octamethylpyrophosphoramide (ompa). In all adducts, the resulting arrays contain seven-coordinate metal atoms, which adopt two different isomeric forms of the mono-capped trigonal prismatic stereochemistry, the L = dma and dmso adducts corresponding to one type, nmp and tmp the other. The adduct formed with ompa behaves as a pair of discrete metal environments bridged by the O-ompa-O′ ligand, thus; [(dpm-O,O′)3Eu(O-ompa-O′)Eu(O,O′-dpm)3], and is found in two forms, one in which both Eu environments is of the tmp type, the other of the dmso/dma type. In the hmpa adduct, the asymmetric unit of the structure is a disordered composite of both types. In none of the adducts is there any further solvation beyond coordination of a single L.
References
[1] C. Pettinari, F. Marchetti, A. Drozdov, in Comprehensive Coordination Chemistry II (Eds J. A. McCleverty, T. Meyer) 2003, Vol. 1, Ch. 1.7, pp. 97–115 (Elsevier: London).[2] A. F. Cockerill, G. L. O. Davies, R. C. Harden, D. M. Rackham, Chem. Rev. 1973, 73, 553.
| Crossref | GoogleScholarGoogle Scholar |
[3] T. J. Wenzel, Top. Curr. Chem. 2013, 341, 1.
| Crossref | GoogleScholarGoogle Scholar | 23595365PubMed |
[4] K. Binnemans, in Handbook on the Physics and Chemistry of the Rare Earths (Eds K. G. Geschneidner, Jr, J.-C. G. Bünzli, V. K. Pecharsky) 2005, Vol. 35, Ch. 225, pp. 107–208 (Elsevier B.V.: Amsterdam).
[5] C. R. De Silva, J. R. Maeyer, A. Dawson, Z. Zheng, Polyhedron 2007, 26, 1229.
| Crossref | GoogleScholarGoogle Scholar |
[6] W. Junhu, T. Masahi, K. Takafumi, T. Masuo, J. Rare Earths 2007, 25, 647.
| Crossref | GoogleScholarGoogle Scholar |
[7] P. P. Lima, F. A. Almeida Paz, R. A. S. Ferreira, V. de Zea Bermudez, L. D. Carlos, Chem. Mater. 2009, 21, 5099.
| Crossref | GoogleScholarGoogle Scholar |
[8] M. H. Baker, J. D. Dorweiler, A. N. Ley, R. D. Pike, S. M. Berry, Polyhedron 2009, 28, 188.
| Crossref | GoogleScholarGoogle Scholar |
[9] V. Vallet, A. Fischer, Z. Szabo, I. Grenthe, Dalton Trans. 2010, 39, 7666.
| Crossref | GoogleScholarGoogle Scholar | 20631967PubMed |
[10] P. A. Stabnikov, G. I. Zharkova, A. I. Smolenkev, N. V. Perukhina, V. V. Krisyuk, J. Struct. Chem. 2011, 52, 560.
| Crossref | GoogleScholarGoogle Scholar |
[11] X.-L. Wang, Inorg. Chim. Acta 2012, 387, 20.
| Crossref | GoogleScholarGoogle Scholar |
[12] F. Pointillart, B. Le Guennic, O. Maury, S. Golhen, O. Cador, L. Ouahab, Inorg. Chem. 2013, 52, 1398.
| Crossref | GoogleScholarGoogle Scholar | 23339398PubMed |
[13] X.-L. Li, C.-L. Chen, J.-L. Kang, A.-L. Wang, P.-Y. Wang, H.-P. Xiao, Inorg. Chim. Acta 2013, 408, 78.
| Crossref | GoogleScholarGoogle Scholar |
[14] Z. Ahmed, K. Iftikhar, Inorg. Chem. 2015, 54, 11209.
| Crossref | GoogleScholarGoogle Scholar | 26566173PubMed |
[15] L.-R. Lin, X. Wang, G.-N. Wai, H.-H. Tang, H. Zhang, L.-H. Ma, Dalton Trans. 2016, 45, 14954.
| Crossref | GoogleScholarGoogle Scholar | 27549432PubMed |
[16] P. Martin-Ramos, L. C. de Jesus Pereira, J. T. Coutinho, F. Kaprowiak, New J. Chem. 2016, 40, 8251.
| Crossref | GoogleScholarGoogle Scholar |
[17] L. Armelao, D. B. Dell’Amico, L. Belluci, G. Bottaro, S. Ciattini, L. Labella, G. Manfroni, F. Marchetti, C. A. Mattei, S. Samaritani, Eur. J. Inorg. Chem. 2018, 4421.
| Crossref | GoogleScholarGoogle Scholar |
[18] H. Shen, A. S. Berezin, O. V. Antonova, V. V. Zvereva, I. V. Korolkov, N. V. Peruvkhina, S. A. Prokhorova, P. A. Stabnikov, J. Struct. Chem. 2018, 59, 676.
| Crossref | GoogleScholarGoogle Scholar |
[19] L. Zhang, H. Ma, Z.-Q. Wang, Y.-M. Tian, Y.-Q. Zhang, H.-B. Sun, J. Mol. Struct. 2019, 1175, 686.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) N. Hasan, K. Iftikhar, New J. Chem. 2019, 43, 2479.
| Crossref | GoogleScholarGoogle Scholar |
(b) N. Hasan, K. Iftikhar, New J. Chem. 2019, 43, 4391.
| Crossref | GoogleScholarGoogle Scholar |
[21] J. J. Uebel, R. M. Wing, J. Am. Chem. Soc. 1972, 94, 8910.
| Crossref | GoogleScholarGoogle Scholar |
[22] E. Bye, Acta Chem. Scand. 1974, 28A, 731.
| Crossref | GoogleScholarGoogle Scholar |
[23] J. A. Cunningham, R. E. Sievers, Inorg. Chem. 1980, 19, 595.
| Crossref | GoogleScholarGoogle Scholar |
[24] J. M. Harrowfield, B. W. Skelton, A. H. White, F. R. Wilner, Inorg. Chim. Acta 2004, 357, 2358.
| Crossref | GoogleScholarGoogle Scholar |
[25] E. J. Chan, B. G. Cox, J. M. Harrowfield, M. I. Ogden, B. W. Skelton, A. H. White, Inorg. Chim. Acta 2004, 357, 2365.
| Crossref | GoogleScholarGoogle Scholar |
[26] S. A. Cotton, J. Harrowfield, in The Rare Earth Elements: Fundamentals and Applications (Ed. D. A. Atwood) 2012, pp. 55–63 (John Wiley & Sons, Ltd: Chichester, UK).
[27] D. Lundberg, I. Persson, L. Eriksson, P. D’Angelo, S. De Panfilis, Inorg. Chem. 2010, 49, 4420.and references therein
| Crossref | GoogleScholarGoogle Scholar | 20397652PubMed |
[28] P. Di Bernardo, A. Melchior, M. Tolazzi, P. L. Zanonato, Coord. Chem. Rev. 2012, 256, 328.
| Crossref | GoogleScholarGoogle Scholar |
[29] D. L. Kepert, Progr. Inorg. Chem. 1979, 25, 41.
[30] (a) K. Binnemans, Chem. Rev. 2009, 109, 4283.
| Crossref | GoogleScholarGoogle Scholar | 19650663PubMed |
(b) K. Binnemans, Coord. Chem. Rev. 2015, 295, 1.
| Crossref | GoogleScholarGoogle Scholar |
[31] Y. Hasegawa, Y. Kitagawa, T. Nakanishi, NPG Asia Mater. 2018, 10, 52.
| Crossref | GoogleScholarGoogle Scholar |
[32] L. R. Melby, N. J. Rose, E. Abramson, J. C. Caris, J. Am. Chem. Soc. 1964, 86, 5117.
| Crossref | GoogleScholarGoogle Scholar |
[33] G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[34] (a) F. A. Cotton, P. Legzdins, Inorg. Chem. 1968, 7, 1777.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Zalkin, D. H. Templeton, D. G. Karraker, Inorg. Chem. 1969, 8, 2680.
| Crossref | GoogleScholarGoogle Scholar |
[35] (a) R. M. Wing, J. J. Uebel, K. K. Andersen, J. Am. Chem. Soc. 1973, 95, 6046.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. J. S. Wasson, D. E. Sands, W. F. Wagner, Inorg. Chem. 1973, 12, 187.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. C. A. Boeyens, J. P. R. De Villiers, J. Cryst. Mol. Struct. 1971, 1, 297.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. S. Erasmus, J. C. A. Boeyens, J. Cryst. Mol. Struct. 1971, 1, 83.
| Crossref | GoogleScholarGoogle Scholar |
(e) E. D. Watkins, J. A. Cunningham, T. Phillips, D. E. Sands, W. F. Wagner, Inorg. Chem. 1969, 8, 29.
| Crossref | GoogleScholarGoogle Scholar |
(f) J. A. Cunningham, D. E. Sands, W. F. Wagner, M. F. Richardson, Inorg. Chem. 1969, 8, 22.
| Crossref | GoogleScholarGoogle Scholar |
[36] A. F. Kirby, R. A. Palmer, Inorg. Chem. 1981, 20, 1030.
| Crossref | GoogleScholarGoogle Scholar |
[37] A. Lennartson, M. Vestergren, M. Hakansson, Chem. – Eur. J. 2005, 11, 1757.
| Crossref | GoogleScholarGoogle Scholar | 15669037PubMed |
[38] J. Wang, M. Takahashi, M. Takeda, Bull. Chem. Soc. Jpn. 2002, 75, 735.
| Crossref | GoogleScholarGoogle Scholar |
[39] E. S. Panin, S. B. Ivanov, V. Ya. Kavun, I. N. Botova, Koord. Khim. 1992, 18, 663.
[40] (a) M. F. Richardson, P. W. R. Corfield, D. E. Sands, R. E. Sievers, Inorg. Chem. 1970, 9, 1632.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. A. Aslanov, V. M. Ionov, V. B. Rybakov, E. F. Korytnyi, L. I. Martynenko, Koord. Khim. 1978, 4, 1427.
(c) N. P. Kuz’mina, A. T. Zoan, A. P. Pisarevskii, L. I. Martynenko, Y. T. Struchkov, Koord. Khim. 1994, 20, 707.
(d) H. A. Luten, W. S. Rees, V. L. Goedken, Chem. Vap. Deposition 1996, 2, 149.
| Crossref | GoogleScholarGoogle Scholar |
[41] M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11, 19.
| Crossref | GoogleScholarGoogle Scholar |
[42] (a) S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, CrystalExplorer 2012 (University of Western Australia: Perth).
(b) C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman, IUCrJ 2017, 4, 575.
| Crossref | GoogleScholarGoogle Scholar |