Novel Homogeneous and Mesoporous MnOx-Doped Ceria Nanosheets as Catalysts for Low-Temperature Selective Catalytic Reduction
Yan Yue A , Yanhua Wang A , Jun Ling A B , Weilin Sun A B and Zhiquan Shen AA Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
B Corresponding authors. Email: lingjun@zju.edu.cn; opl_sunwl@zju.edu.cn
Australian Journal of Chemistry 72(9) 657-662 https://doi.org/10.1071/CH19068
Submitted: 13 February 2019 Accepted: 1 May 2019 Published: 20 May 2019
Abstract
The development of a catalyst for the selective catalytic reduction (SCR) of NOx is essential for purifying air and the denitration of coal-burning exhaust. Herein, we prepare novel MnOx-CeO2 nanosheets with porous structures by a homogeneous coordination precipitation (HCP) method which exhibit a high NO removal efficiency above 90 % in the SCR reaction at low temperature (150–240°C). The MnOx-CeO2(HCP) catalysts have a higher Brunauer–Emmett–Teller (BET) surface area and more homogeneous distribution of Mnx+ in the CeO2 lattice than those prepared by co-precipitation and precursor mixture combustion methods according to BET, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy characterizations. Together with a higher ratio of Mn4+, Ce3+, and Oα, the above properties are responsible for the high catalytic performances of MnOx-CeO2(HCP) in the SCR of NOx.
References
[1] F. Liu, Y. Yu, H. He, Chem. Commun. 2014, 50, 8445.| Crossref | GoogleScholarGoogle Scholar |
[2] T. Boningari, P. G. Smirniotis, Curr. Opin. Chem. Eng. 2016, 13, 133.
| Crossref | GoogleScholarGoogle Scholar |
[3] P. Forzatti, Appl. Catal. A Gen. 2001, 222, 221.
| Crossref | GoogleScholarGoogle Scholar |
[4] J. Fan, M. Lv, W. Luo, X. Ran, Y. Deng, W. X. Zhang, J. Yang, Chem. Commun. 2018, 54, 3783.
| Crossref | GoogleScholarGoogle Scholar |
[5] D. Zhang, L. Zhang, L. Shi, C. Fang, H. Li, R. Gao, L. Huang, J. Zhang, Nanoscale 2013, 5, 1127.
| Crossref | GoogleScholarGoogle Scholar | 23282798PubMed |
[6] G. L. Bauerle, S. C. Wu, K. Nobe, Ind. Eng. Chem. Prod. Res. Dev. 1978, 17, 117.
| Crossref | GoogleScholarGoogle Scholar |
[7] L. Chen, J. Li, M. Ge, Chem. Eng. J. 2011, 170, 531.
| Crossref | GoogleScholarGoogle Scholar |
[8] S. Djerad, M. Crocoll, S. Kureti, L. Tifouti, W. Weisweiler, Catal. Today 2006, 113, 208.
| Crossref | GoogleScholarGoogle Scholar |
[9] L. Chen, J. Li, M. Ge, J. Phys. Chem. C 2009, 113, 21177.
| Crossref | GoogleScholarGoogle Scholar |
[10] S. Ali, L. Chen, Z. Li, T. Zhang, R. Li, S. ul Hasnain Bakhtiar, X. Leng, F. Yuan, X. Niu, Y. Zhu, Appl. Catal. B 2018, 236, 25.
| Crossref | GoogleScholarGoogle Scholar |
[11] Y. Geng, X. Chen, S. Yang, F. Liu, W. Shan, ACS Appl. Mater. Interfaces 2017, 9, 16951.
| Crossref | GoogleScholarGoogle Scholar | 28471163PubMed |
[12] R. Qu, X. Gao, K. Cen, J. Li, Appl. Catal. B 2013, 142–143, 290.
| Crossref | GoogleScholarGoogle Scholar |
[13] M. Machida, D. Kurogi, T. Kijima, Chem. Mater. 2000, 12, 3165.
| Crossref | GoogleScholarGoogle Scholar |
[14] G. Qi, R. T. Yang, R. Chang, Appl. Catal. B 2004, 51, 93.
| Crossref | GoogleScholarGoogle Scholar |
[15] M. Kang, E. D. Park, J. M. Kim, J. E. Yie, Appl. Catal. A 2007, 327, 261.
| Crossref | GoogleScholarGoogle Scholar |
[16] D. Jiang, M. Zhang, G. Li, H. Jiang, Catal. Commun. 2012, 17, 59.
| Crossref | GoogleScholarGoogle Scholar |
[17] R. Gao, D. Zhang, P. Maitarad, L. Shi, T. Rungrotmongkol, H. Li, J. Zhang, W. Cao, J. Phys. Chem. C 2013, 117, 10502.
| Crossref | GoogleScholarGoogle Scholar |
[18] B. Shen, F. Wang, T. Liu, Powder Technol. 2014, 253, 152.
| Crossref | GoogleScholarGoogle Scholar |
[19] B. Murugan, A. V. Ramaswamy, Chem. Mater. 2005, 17, 3983.
| Crossref | GoogleScholarGoogle Scholar |
[20] H. Jiang, J. Zhao, D. Jiang, M. Zhang, Catal. Lett. 2014, 144, 325.
| Crossref | GoogleScholarGoogle Scholar |
[21] S. Li, N. Wang, Y. Yue, G. Wang, Z. Zu, Y. Zhang, Chem. Sci. 2015, 6, 2495.
| Crossref | GoogleScholarGoogle Scholar | 28706658PubMed |
[22] L.-N. Jin, Q. Liu, W.-Y. Sun, CrystEngComm 2014, 16, 3816.
| Crossref | GoogleScholarGoogle Scholar |
[23] M. Du, C.-P. Li, C.-S. Liu, S.-M. Fang, Coord. Chem. Rev. 2013, 257, 1282.
| Crossref | GoogleScholarGoogle Scholar |
[24] K. J. Lee, Y. Kim, J. H. Lee, S. J. Cho, J. H. Kwak, H. R. Moon, Chem. Mater. 2017, 29, 2874.
| Crossref | GoogleScholarGoogle Scholar |
[25] F. Gao, X. Tang, H. Yi, J. Li, S. Zhao, J. Wang, C. Chu, C. Li, Chem. Eng. J. 2017, 317, 20.
| Crossref | GoogleScholarGoogle Scholar |
[26] Z. Y. Ding, L. Li, D. Wade, E. F. Gloyna, Ind. Eng. Chem. Res. 1998, 37, 1707.
[27] Z. Fan, J. W. Shi, C. Gao, G. Gao, B. Wang, C. Niu, ACS Appl. Mater. Interfaces 2017, 9, 16117.
| Crossref | GoogleScholarGoogle Scholar | 28467037PubMed |
[28] C. Liu, J. W. Shi, C. Gao, C. Niu, Appl. Catal. A 2016, 522, 54.
| Crossref | GoogleScholarGoogle Scholar |
[29] T. Boningari, P. R. Ettireddy, A. Somogyvari, Y. Liu, A. Vorontsov, C. A. McDonald, P. G. Smirniotis, J. Catal. 2015, 325, 145.
| Crossref | GoogleScholarGoogle Scholar |
[30] F. Kapteijn, L. Singoredjo, A. Andreini, J. A. Moulijn, Appl. Catal. B 1994, 3, 173.
| Crossref | GoogleScholarGoogle Scholar |
[31] H. Bao, Z. Zhang, Q. Hua, W. Huang, Langmuir 2014, 30, 6427.
| Crossref | GoogleScholarGoogle Scholar | 24827164PubMed |
[32] A. Machocki, T. Ioannides, B. Stasinska, W. Gac, G. Avgouropoulos, D. Delimaris, W. Grzegorczyk, S. Pasieczna, J. Catal. 2004, 227, 282.
| Crossref | GoogleScholarGoogle Scholar |
[33] B. Shen, T. Liu, X. Yang, N. Zhao, Environ. Eng. Sci. 2011, 28, 291.
| Crossref | GoogleScholarGoogle Scholar |