Large-Scale Synthesis and Lithium Storage Performance of Multilayer TiO2 Nanobelts
Zongkai Yue A D , Yaozu Kang C , Tianyu Mao A , Mengmeng Zhen B and Zhiyong Wang A DA Laboratory of Environmental Protection in Water Transport Engineering, Tianjin Research Institute of Water Transport Engineering, Tianjin 300456, China.
B Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
C Tianjin Airlines Company Limited, Tianjin 300071, China.
D Corresponding authors. Email: yzkai0918@163.com; 1009499055@qq.com
Australian Journal of Chemistry 72(6) 473-477 https://doi.org/10.1071/CH19054
Submitted: 19 February 2019 Accepted: 28 March 2019 Published: 18 April 2019
Abstract
Titanium dioxide (TiO2) has been widely investigated as the electrode material for lithium ion batteries (LIBs), due to its low cost, small volume expansion, and high environmental friendliness. However, the fading capacity and short cycle life during the cycling process lead to poor cycling performance. Herein, multilayer TiO2 nanobelts with a high specific surface area and with many pores between nanoparticles are constructed via a simple and large-scale approach. Benefiting from the multilayer nanobelt structure, as-prepared TiO2 nanobelts deliver a high reversible capacity, strong cycling stability, and ultra-long cycle life (~185 mAh g−1 at 500 mA g−1 after 500 cycles) as electrode materials for LIBs.
References
[1] L. Yan, Y. Xu, M. Zhou, G. Chen, S. Deng, S. Smirnov, H. Luo, G. Zou, Electrochim. Acta 2015, 169, 73.| Crossref | GoogleScholarGoogle Scholar |
[2] Y. Xiao, C. Hu, M. Cao, Chem. Asian J. 2014, 9, 351.
| Crossref | GoogleScholarGoogle Scholar | 24347075PubMed |
[3] J. X. Wang, C. Wang, M. M. Zhen, Chem. Eng. J. 2019, 356, 1.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. M. Zhen, Z. Zhang, Q. T. Ren, L. Liu, Mater. Lett. 2016, 177, 21.
| Crossref | GoogleScholarGoogle Scholar |
[5] Y. Q. Wang, L. Gu, Y. G. Guo, H. Li, X. Q. He, S. Tsukimoto, Y. Ikuhara, L. J. Wan, J. Am. Chem. Soc. 2012, 134, 7874.
| Crossref | GoogleScholarGoogle Scholar | 22530994PubMed |
[6] M. M. Zhen, X. J. Guo, G. D. Gao, Z. Zhou, L. Liu, Chem. Commun. 2014, 50, 11915.
| Crossref | GoogleScholarGoogle Scholar |
[7] M. M. Zhen, S. Q. Guo, G. D. Gao, Z. Zhou, L. Liu, Chem. Commun. 2015, 51, 507.
| Crossref | GoogleScholarGoogle Scholar |
[8] X. Gao, B. Wang, Y. Zhang, H. Liu, H. Liu, H. Wu, S. Dou, Energy Storage Mater. 2019, 16, 46.
| Crossref | GoogleScholarGoogle Scholar |
[9] H. Ming, J. Ming, S.-M. Oh, E.-J. Lee, H. Huang, Q. Zhou, J. Zheng, Y. K. Sun, J. Mater. Chem. A Mater. Energy Sustain. 2014, 2, 18938.
| Crossref | GoogleScholarGoogle Scholar |
[10] M. M. Zhen, L. Liu, C. Wang, Microporous Mesoporous Mater. 2017, 246, 130.
| Crossref | GoogleScholarGoogle Scholar |
[11] N. D. Petkovich, B. E. Wilson, S. G. Rudisill, A. Stein, ACS Appl. Mater. Interfaces 2014, 6, 18215.
| Crossref | GoogleScholarGoogle Scholar | 25249184PubMed |
[12] J. Shen, H. Wang, Y. Zhou, N. Ye, L. Wang, CrystEngComm 2012, 14, 6215.
| Crossref | GoogleScholarGoogle Scholar |
[13] N. G. Akalework, C.-J. Pan, W.-N. Su, J. Rick, M. C. Tsai, J. F. Lee, J. M. Lin, L. D. Tsai, B. J. Hwang, J. Mater. Chem. 2012, 22, 20977.
| Crossref | GoogleScholarGoogle Scholar |
[14] H. J. Liu, S. Zhang, Y. L. Chen, J. T. Zhang, P. Guo, M. Liu, X. Q. Lu, J. Zhang, Z. J. Wang, Appl. Surf. Sci. 2018, 458, 1018.
| Crossref | GoogleScholarGoogle Scholar |
[15] S. S. El-Deen, A. M. Hashem, A. E. Abdel Ghany, S. Indris, H. Ehrenberg, A. Mauger, C. M. Julien, Ionics 2018, 24, 2925.
| Crossref | GoogleScholarGoogle Scholar |
[16] X. G. Han, X. Han, L. Q. Sun, P. Wang, M. S. Jin, X. J. Wang, Mater. Chem. Phys. 2016, 171, 11.
| Crossref | GoogleScholarGoogle Scholar |
[17] Y. Liu, X. D. Yan, B. Q. Xu, J. L. Lan, Y. H. Yu, X. P. Yang, Y. H. Lin, C. W. Nan, ACS Appl. Mater. Interfaces 2018, 10, 19047.
| Crossref | GoogleScholarGoogle Scholar | 29757610PubMed |
[18] W. Wen, J. M. Wu, Y. Z. Jiang, S. L. Yu, J. Q. Bai, M. H. Cao, J. Cui, Sci. Rep. 2015, 5, 11804.
| Crossref | GoogleScholarGoogle Scholar | 26133276PubMed |
[19] P. Gao, D. Bao, Y. Wang, Y. J. Chen, L. Q. Wang, S. Q. Yang, G. R. Chen, G. B. Li, Y. Z. Sun, W. Qin, ACS Appl. Mater. Interfaces 2013, 5, 368.
| Crossref | GoogleScholarGoogle Scholar | 23265603PubMed |