A Rapid and Sensitive Aptasensor for Cyromazine Detection in Raw Milk Based on a Nanogold Probe and G-Quadruplex Formation
Xu Dang A C , Wenchao Gu B C , Xiyin Zheng B , Xuelian Fei A , Fuxiang Tian A , Haibo Xing A D and Xiaojun Hu A DA School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
B Putuo District Center for Disease Control and Prevention, Shanghai, 200333, China.
C These authors contributed equally to this work.
D Corresponding authors. Email: michaelyanzi@163.com; 267358918@qq.com
Australian Journal of Chemistry 72(7) 555-560 https://doi.org/10.1071/CH19052
Submitted: 31 January 2019 Accepted: 15 May 2019 Published: 13 June 2019
Abstract
Herein, a rapid, facile, and colourimetric sensor for the detection of cyromazine in raw milk is reported using an aptamer based on gold nanoparticles (AuNPs). A sequence-specific aptamer for cyromazine called Tcyr1 is designed to absorb on the surface of AuNPs and electrostatically interacts with poly(diallyldimethylammonium chloride) (PDDA), which prevents AuNPs from aggregating. It can also self-assemble to form a G-quadruplex-CYR complex with cyromazine. Because of its specificity and stability, the introduction of cyromazine in raw milk would influence the protection thus the following cationic polymer could aggregate AuNPs and cause a remarkable change in colour. According to this, the presence of cyromazine can be determined by the naked eye and means of absorbance. This sensor is selective for the detection of cyromazine in raw milk and has a limit of detection of 200 ppb by the naked eye and of 5.8 ppb by spectrophotometer, and has a detection range from 0.1 to 1 ppm.
References
[1] A. M. Cook, R. Huetter, J. Agric. Food Chem. 1981, 29, 1135.| Crossref | GoogleScholarGoogle Scholar |
[2] J. X. Liu, Y. B. Zhong, J. Liu, H. C. Zhang, J. Z. Xi, J. P. Wang, Food Control 2010, 21, 1482.
| Crossref | GoogleScholarGoogle Scholar |
[3] L. O. Lim, S. J. Scherer, K. D. Shuler, J. P. Toth, J. Agric. Food Chem. 1990, 38, 860.
| Crossref | GoogleScholarGoogle Scholar |
[4] J. Choi, Y. T. Kim, J. H. Lee, Analyst 2010, 135, 2445.
| Crossref | GoogleScholarGoogle Scholar | 20683522PubMed |
[5] K. Ai, Y. Liu, L. Lu, J. Am. Chem. Soc. 2009, 131, 9496.
| Crossref | GoogleScholarGoogle Scholar | 19537721PubMed |
[6] X. Zhu, S. Wang, Q. Liu, Q. Xu, S. Xu, H. Chen, J. Agric. Food Chem. 2009, 57, 11075.
| Crossref | GoogleScholarGoogle Scholar | 19899757PubMed |
[7] J. P. Toth, P. C. Bardalaye, J. Chromatogr. A 1987, 408, 335.
| Crossref | GoogleScholarGoogle Scholar |
[8] R. A. Yokley, L. C. Mayer, R. Rezaaiyan, M. E. Manuli, M. W. Cheung, J. Agric. Food Chem. 2000, 48, 3352.
| Crossref | GoogleScholarGoogle Scholar | 10956115PubMed |
[9] J. V. Sancho, M. Ibanez, S. Grimalt, O. J. Pozo, F. Hernandez, Anal. Chim. Acta 2005, 530, 237.
| Crossref | GoogleScholarGoogle Scholar |
[10] R. Wei, R. Wang, Q. Zeng, M. Chen, T. Liu, J. Chromatogr. Sci. 2009, 47, 581.
| Crossref | GoogleScholarGoogle Scholar | 19772731PubMed |
[11] H. Yu, Y. Tao, D. Chen, Y. Wang, Z. Liu, Y. Pan, L. Huang, D. Peng, M. Dai, Z. Liu, Z. Yuan, Anal. Chim. Acta 2010, 682, 48.
| Crossref | GoogleScholarGoogle Scholar | 21056714PubMed |
[12] S. Wang, D. Li, Z. Hua, M. Zhao, Analyst 2011, 136, 3672.
| Crossref | GoogleScholarGoogle Scholar | 21785799PubMed |
[13] S. MacMahon, T. H. Begley, G. W. Diachenko, S. A. Stromgren, J. Chromatogr. A 2012, 1220, 101.
| Crossref | GoogleScholarGoogle Scholar | 22197251PubMed |
[14] J. Draher, V. Pound, T. M. Reddy, J. Chromatogr. A 2014, 1373, 106.
| Crossref | GoogleScholarGoogle Scholar | 25435465PubMed |
[15] J. Draher, S. Ehling, N. Cellar, T. Reddy, J. Henion, N. Sousou, Rapid Commun. Mass Spectrom. 2016, 30, 1265.
| Crossref | GoogleScholarGoogle Scholar | 27173108PubMed |
[16] X. Ge, X. Wu, J. Wang, S. Liang, H. Sun, J. Dairy Sci. 2015, 98, 2161.
| Crossref | GoogleScholarGoogle Scholar | 25682136PubMed |
[17] D. Chen, Y. Zhao, H. Miao, Y. Wu, Talanta 2015, 134, 144.
| Crossref | GoogleScholarGoogle Scholar | 25618651PubMed |
[18] P. Ma, F. Liang, Y. Sun, Y. Jin, Y. Chen, X. Wang, H. Zhang, D. Gao, D. Song, Microchim. Acta 2013, 180, 1173.
| Crossref | GoogleScholarGoogle Scholar |
[19] W. H. Bai, C. Z. Zhu, G. Zhang, Y. Huang, J. Yan, A. L. Chen, Anal. Methods 2016, 8, 5869.
| Crossref | GoogleScholarGoogle Scholar |
[20] H. Guo, X. Zhou, Y. Zhang, B. Song, J. Zhang, Food Chem. 2016, 197, 359.
| Crossref | GoogleScholarGoogle Scholar | 26616961PubMed |
[21] H. Chi, B. Liu, G. Guan, Z. Zhang, M. Y. Han, Analyst 2010, 135, 1070.
| Crossref | GoogleScholarGoogle Scholar | 20419258PubMed |
[22] F. Wei, R. Lam, S. Cheng, S. Lu, D. Ho, N. Li, Appl. Phys. Lett. 2010, 96, 133702.
| Crossref | GoogleScholarGoogle Scholar | 20428252PubMed |
[23] L. Li, B. X. Li, D. Cheng, L. H. Mao, Food Chem. 2010, 122, 895.
| Crossref | GoogleScholarGoogle Scholar |
[24] X. Liang, H. Wei, Z. Cui, J. Deng, Z. Zhang, X. You, X. E. Zhang, Analyst 2011, 136, 179.
| Crossref | GoogleScholarGoogle Scholar | 20877886PubMed |
[25] M. Asghar, M. Yaqoob, A. Nabi, Chem. Res. Chin. Univ. 2017, 33, 354.
| Crossref | GoogleScholarGoogle Scholar |
[26] X. Y. Ma, X. Y. Kou, Y. Y. Xu, D. W. Yang, P. Miao, Nanoscale Adv. 2019, 1, 486.
| Crossref | GoogleScholarGoogle Scholar |
[27] J. W. Liu, Z. H. Cao, Y. Lu, Chem. Rev. 2009, 109, 1948.
| Crossref | GoogleScholarGoogle Scholar |
[28] H. B. Xing, S. S. Zhan, Y. G. Wu, L. He, P. Zhou, RSC Adv. 2013, 3, 17424.
| Crossref | GoogleScholarGoogle Scholar |
[29] J. C. Liu, W. H. Bai, C. Zhu, M. M. Yan, S. M. Yang, A. L. Chen, Analyst 2015, 140, 3064.
[30] W. Su, V. Bonnard, G. A. Burley, Chem. – Eur. J. 2011, 17, 7982.
| Crossref | GoogleScholarGoogle Scholar | 21671299PubMed |
[31] H. Fan, G. Yan, Z. Zhao, X. Hu, W. Zhang, X. Zhang, W. Tan, Angew. Chem. 2016, 55, 5477.
| Crossref | GoogleScholarGoogle Scholar |
[32] T. Li, S. Dong, E. Wang, J. Am. Chem. Soc. 2010, 132, 13156.
| Crossref | GoogleScholarGoogle Scholar | 20822179PubMed |
[33] M. Asghar, M. Yaqoob, A. Nabi, Int. J. Environ. Anal. Chem. 2017, 97, 276.
| Crossref | GoogleScholarGoogle Scholar |
[34] H. X. Zhang, Y. F. Ding, E. Liu, L. W. Li, J. Incl. Phenom. Macrocycl. Chem. 2017, 89, 289.
| Crossref | GoogleScholarGoogle Scholar |
[35] H. Liu, C. Ma, J. Wang, H. Chen, K. Wang, Anal. Biochem. 2017, 517, 18.
| Crossref | GoogleScholarGoogle Scholar | 27984013PubMed |
[36] Y. Tian, Y. Wang, Z. Sheng, T. Li, X. Li, Anal. Biochem. 2016, 513, 87.
| Crossref | GoogleScholarGoogle Scholar | 27612649PubMed |
[37] R. Jin, B. L. Gaffney, C. Wang, R. A. Jones, K. J. Breslauer, Proc. Natl. Acad. Sci. USA 1992, 89, 8832.
| Crossref | GoogleScholarGoogle Scholar | 1528900PubMed |
[38] J. R. Wyatt, P. W. Davis, S. M. Freier, Biochemistry 1996, 35, 8002.
| Crossref | GoogleScholarGoogle Scholar | 8672504PubMed |