Synthesis of Liquid Polyisoprene with High cis-1,4 Unit Content and Narrow Molecular Weight Distribution Using Neodymium Phosphate Catalyst
Jie Liu A B , Xin Min A , Xiuzhong Zhu A , Zichao Wang A , Tong Wang A and Xiaodong Fan A CA Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an, Shaanxi, 710129, China.
B School of Materials Science and Engineering, Shaanxi Province Key Laboratory of Catalytic Foundation and Application, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
C Corresponding author. Email: xfand@126.com
Australian Journal of Chemistry 72(6) 467-472 https://doi.org/10.1071/CH19020
Submitted: 14 January 2019 Accepted: 2 March 2019 Published: 29 March 2019
Abstract
The polymerization of isoprene (Ip) initiated by a ternary catalytic system consisting of liquid Nd(P204)3 (Nd), Al(i-Bu)2H (Al), and CHCl3 (Cl) in cyclohexane was examined. The effects of order of addition and amount of Ip, Al, and Cl in the catalyst on the polymerization were evaluated. The molecular weight (Mn), molecular weight distribution (Mw/Mn), and microstructure of the polymer were characterized using size exclusion chromatography and multiangle light scattering, FT-IR, 1H NMR and 13C NMR analysis. The results indicate that the order of addition, i.e. Nd + Ip + Al + Cl and ratios of [Ip]/[Nd] = 30, [Al]/[Nd] = 20, and [Cl]/[Nd] = 3 were essential for the optimized ternary catalyst system Nd(P204)3/Al(i-Bu)2H/CHCl3. The resulting liquid polyisoprene (LIR) has a high cis-1,4 unit content (>98 %) and a narrow molecular weight distribution (Mw/Mn < 1.2). The molecular weight of the polymer was precisely controlled.
References
[1] H. M. Nor, J. R. Ebdon, Prog. Polym. Sci. 1998, 23, 143.| Crossref | GoogleScholarGoogle Scholar |
[2] H. M. Dahlan, Z. D. Khairul Zaman, A. Ibrahim, J. Appl. Polym. Sci. 2000, 78, 1776.
| Crossref | GoogleScholarGoogle Scholar |
[3] Z. Li, W. Ren, H. Chen, L. Ye, Y. Zhang, Polym. Int. 2012, 61, 531.
| Crossref | GoogleScholarGoogle Scholar |
[4] Y. Ren, S. Zhao, Q. Li, X. Zhang, L. Zhang, J. Appl. Polym. Sci. 2015, 132, 382.
| Crossref | GoogleScholarGoogle Scholar |
[5] H. M. Dahlan, M. D. Khairul Zaman, A. Ibrahim, Polym. Test. 2002, 21, 905.
| Crossref | GoogleScholarGoogle Scholar |
[6] T. Nakazono, A. Ozaki, A. Matsumoto, Chem. Lett. 2010, 39, 268.
| Crossref | GoogleScholarGoogle Scholar |
[7] C. Ren, G. Li, W. M. Dong, L. S. Jiang, X. Q. Zhang, F. S. Wang, Polymer 2007, 48, 2470.
| Crossref | GoogleScholarGoogle Scholar |
[8] K. Lv, D. Cui, Organometallics 2010, 29, 2987.
| Crossref | GoogleScholarGoogle Scholar |
[9] L. X. Zhang, M. Nishiura, M. Yuki, Y. Luo, Z. M. Hou, Angew. Chem. Int. Ed. 2008, 47, 2642.
| Crossref | GoogleScholarGoogle Scholar |
[10] W. Gao, D. Cui, J. Am. Chem. Soc. 2008, 130, 4984.
| Crossref | GoogleScholarGoogle Scholar | 18338895PubMed |
[11] L. Friebe, O. Nuyken, W. Obrecht, in Neodymium-Based Ziegler/Natta Catalysts and their Application in Diene Polymerization (Ed. O. Nuyken) 2006, pp. 101–168 (Springer: Berlin).
[12] Y. Hu, C. Kong, Y. Li, L. Chang, D. Xu, Y. Wang, Polym. Mater. Sci. Eng. 2011, 27, 9.
| Crossref | GoogleScholarGoogle Scholar |
[13] L. Friebe, H. Windisch, O. Nuyken, W. Obrecht, J. Macromol. Sci. A 2004, 41, 245.
| Crossref | GoogleScholarGoogle Scholar |
[14] A. Valente, P. Zinck, M. J. Vitorino, A. Mortreux, M. Visseaux, J. Polym. Sci. Polym. Chem. 2010, 48, 4640.
| Crossref | GoogleScholarGoogle Scholar |
[15] C. Fan, C. Bai, H. Cai, Q. Dai, X. Zhang, F. Wang, J. Polym. Sci. Polym. Chem. 2010, 48, 4768.
| Crossref | GoogleScholarGoogle Scholar |
[16] F. Wang, C. Zhang, Y. Hu, X. Jia, C. Bai, X. Zhang, Polymer 2012, 53, 6027.
| Crossref | GoogleScholarGoogle Scholar |
[17] Q. Xu, L. Li, F. Guo, Z. Shi, H. Ma, Y. Wang, Y. Wang, Y. Li, Polym. Eng. Sci. 2014, 54, 1858.
| Crossref | GoogleScholarGoogle Scholar |
[18] E. Nifant’ev, G. N. Tavtorkinko, M. P. Filatova, Appl. Catal. A Gen. 2014, 478, 219.
| Crossref | GoogleScholarGoogle Scholar |
[19] L. Friebe, O. Nuyken, W. Obrecht, J. Macromol. Sci. A 2005, 42, 839.
| Crossref | GoogleScholarGoogle Scholar |
[20] Neodymium Based Ziegler Catalysts – Fundamental Chemistry (Ed. O. Nuyken), Advances in Polymer Science, Vol. 204, 2006 (Springer: Berlin).
[21] L. Zhang, T. Suzuki, Y. Luo, M. Nishiura, Z. M. Hou, Angew. Chem. 2007, 119, 1941.
| Crossref | GoogleScholarGoogle Scholar |
[22] M. W. Duch, D. M. Grant, Macromolecules 1970, 3, 165.
| Crossref | GoogleScholarGoogle Scholar |
[23] W. Dong, K. Endo, T. Masuda, Macromol. Chem. Phys. 2003, 204, 104.
| Crossref | GoogleScholarGoogle Scholar |
[24] D. J. Wilson, D. K. Jenkins, Polym. Bull. 1992, 27, 407.
| Crossref | GoogleScholarGoogle Scholar |
[25] R. P. Hughes, J. Powel, J. Am. Chem. Soc. 1972, 94, 7723.
| Crossref | GoogleScholarGoogle Scholar |
[26] F. Wang, H. Liu, W. J. Zheng, J. Guo, C. Y. Zhang, L. P. Zhao, H. X. Zhang, Y. M. Hu, C. X. Bai, X. Q. Zhang, Polymer 2013, 54, 6716.
| Crossref | GoogleScholarGoogle Scholar |
[27] Z. Jian, D. Cui, Z. Hou, X. Li, Chem. Commun. 2010, 46, 3022.
| Crossref | GoogleScholarGoogle Scholar |
[28] R. P. Quirk, A. M. Kellsa, K. Yunlu, J.-P. Cuif, Polymer 2000, 41, 5903.
| Crossref | GoogleScholarGoogle Scholar |
[29] W. J. Evans, D. G. Giarikos, Macromolecules 2004, 37, 5130.
| Crossref | GoogleScholarGoogle Scholar |