Microwave-Assisted Synthesis, Characterisation, and DNA-Binding Properties of RuII Complexes Coordinated by Norfloxacin as Potential Tumour Inhibitors
Xukui Liu A , Xuanhao Zhao A , Yumei Li A , Kangdi Zheng A , Qiong Wu A D and Wenjie Mei A B C DA School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
B Guangdong Province Engineering Technology Centre for Molecular Probes and Biomedicine Imaging, Guangzhou 510006, China.
C Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China.
D Corresponding authors. Email: wuqiongniu.1113@163.com; wenjiemei@126.com
Australian Journal of Chemistry 72(5) 400-406 https://doi.org/10.1071/CH18637
Submitted: 7 January 2019 Accepted: 7 February 2019 Published: 1 March 2019
Abstract
Three novel norfloxacin-based ruthenium(ii) complexes, [Ru(bpy)2(NFLX)]Cl·2H2O (1), [Ru(phen)2(NFLX)]Cl·2H2O (2), and [Ru(dmbpy)2(NFLX)]Cl·2H2O (3) (bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, dmbpy = 4,4′-dimethyl-2,2′-bipyridine, and NFLX = norfloxacin), were synthesised and characterised with electrospray ionisation mass spectrometry and 1H and 13C NMR spectroscopy. The antitumour properties were evaluated by MTT assay, and the data revealed that 2 can inhibit the growth of human lung adenocarcinoma A549 efficiently. Furthermore, the DNA-binding behaviours of these complexes were investigated by a multiple spectroscopy assay and viscosity study. The results indicated that these complexes interact with calf thymus DNA through electrostatic interactions with a strong binding affinity in the order 2 > 3 > 1. Therefore, these results suggested that 2 might be a suitable anticancer agent due to its excellent DNA-binding abilities.
References
[1] J. K. Barton, Science 1986, 233, 727.| Crossref | GoogleScholarGoogle Scholar | 3016894PubMed |
[2] B. A. Jackson, V. Y. Alekseyev, J. K. Barton, Biochemistry 1999, 38, 4655.
| Crossref | GoogleScholarGoogle Scholar | 10200152PubMed |
[3] P. J. Dandliker, R. E. Holmlin, J. K. Barton, Science 1997, 275, 1465.
| Crossref | GoogleScholarGoogle Scholar | 9045609PubMed |
[4] H. Chao, W. J. Mei, Q. W. Huang, L. N. Ji, J. Inorg. Biochem. 2002, 92, 165.
| Crossref | GoogleScholarGoogle Scholar | 12433424PubMed |
[5] J. G. Collins, A. D. Sleeman, J. R. Aldrich-Wright, I. Greguric, T. W. Hambley, Inorg. Chem. 1998, 37, 3133.
| Crossref | GoogleScholarGoogle Scholar |
[6] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176.
| Crossref | GoogleScholarGoogle Scholar |
[7] K. S. Lovejoy, S. J. Lippard, Dalton Trans. 2009, 38, 10651.
| Crossref | GoogleScholarGoogle Scholar |
[8] K. J. Du, J. Q. Wang, J. F. Kou, G. Y. Li, L. L. Wang, H. Chao, L. N. Ji, Eur. J. Med. Chem. 2011, 46, 1056.
| Crossref | GoogleScholarGoogle Scholar | 21295892PubMed |
[9] Y. H. Li, B. D. Wang, Z. Y. Yang, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 67, 395.
| Crossref | GoogleScholarGoogle Scholar | 16956786PubMed |
[10] H. Abe, M. Kawada, H. Inoue, S.-i. Ohba, A. Nomoto, T. Watanabe, M. Shibasaki, Org. Lett. 2013, 15, 2124.
| Crossref | GoogleScholarGoogle Scholar | 23594173PubMed |
[11] Y. Xia, Z. Y. Yang, P. Xia, T. Hackl, E. Hamel, A. Mauger, J. H. Wu, K. H. Lee, J. Med. Chem. 2001, 44, 3932.
| Crossref | GoogleScholarGoogle Scholar | 11689079PubMed |
[12] Y. S. Kim, K. M. Kim, R. Song, M. J. Jun, Y. S. Sohn, J. Inorg. Biochem. 2001, 87, 157.
| Crossref | GoogleScholarGoogle Scholar | 11730897PubMed |
[13] S. W. Wang, S. L. Pan, Y. C. Huang, J. H. Guh, P. C. Chiang, D. Y. Huang, S. C. Kuo, K. H. Lee, C. M. Teng, J. Hepatol. 2007, 46, S110.
| Crossref | GoogleScholarGoogle Scholar |
[14] N. Kumar, V. P. Raj, B. S. Jayshree, S. S. Kar, A. Anandam, S. Thomas, P. Jain, A. Rai, C. M. Rao, Chem. Biol. Drug Des. 2012, 80, 291.
| Crossref | GoogleScholarGoogle Scholar | 22553933PubMed |
[15] Y. X. Li, Z. F. Chen, R. G. Xiong, Z. Xue, H. X. Ju, X. Z. You, Inorg. Chem. Commun. 2003, 6, 819.
| Crossref | GoogleScholarGoogle Scholar |
[16] Z. F. Chen, R. G. Xiong, J. L. Zuo, Z. Guo, X. Z. You, H. K. Fun, J. Chem. Soc. Dalton Trans. 2000, 4013.
| Crossref | GoogleScholarGoogle Scholar |
[17] Z. F. Chen, H. Liang, H. M. Hu, Y. Li, R. G. Xiong, X. Z. You, Inorg. Chem. Commun. 2003, 6, 241.
| Crossref | GoogleScholarGoogle Scholar |
[18] Z. F. Chen, B. Q. Li, Y. R. Xie, R. G. Xiong, X. Z. You, X. L. Feng, Inorg. Chem. Commun. 2001, 4, 346.
| Crossref | GoogleScholarGoogle Scholar |
[19] P. Ruíz, R. Ortiz, L. Perello, G. Alzuet, M. Gonza’lez-A’lvarez, M. Liu-Gonza’lez, F. Sanz-Ruı’z, J. Inorg. Biochem. 2007, 101, 831.
| Crossref | GoogleScholarGoogle Scholar | 17383004PubMed |
[20] J. Liu, T. B. Lu, H. Deng, L. N. Ji, Transit. Metal Chem. 2003, 28, 116.
| Crossref | GoogleScholarGoogle Scholar |
[21] Z. F. Chen, R. G. Xiong, J. Zhang, X. T. Chen, Z. L. Xue, X. Z. You, Inorg. Chem. 2001, 40, 4075.
| Crossref | GoogleScholarGoogle Scholar | 11466071PubMed |
[22] Y. C. Wang, H. Zhao, Q. Ye, Z. F. Chen, R. G. Xiong, H. K. Fun, Inorg. Chim. Acta 2004, 357, 4303.
| Crossref | GoogleScholarGoogle Scholar |
[23] X. B. Chen, Q. Ye, Q. Wu, Y. M. Song, R. G. Xiong, X. Z. You, Inorg. Chem. Commun. 2004, 7, 1302.
| Crossref | GoogleScholarGoogle Scholar |
[24] M. J. Pisani, P. D. Fromm, Y. Mulyana, R. J. Clarke, H. Kçrner, K. Heimann, J. G. Collins, F. R. Keene, ChemMedChem 2011, 6, 848.
| Crossref | GoogleScholarGoogle Scholar | 21472992PubMed |
[25] C. X. Wang, Q. Wu, Y. C. Zeng, D. W. Huang, C. Q. Yu, X. C. Wang, W. J. Mei, J. Coord. Chem. 2015, 68, 1489.
| Crossref | GoogleScholarGoogle Scholar |
[26] Q. Lu, W. Mei, S. Luo, W. He, Mol. Med. Rep. 2015, 11, 4424.
| Crossref | GoogleScholarGoogle Scholar | 25651236PubMed |
[27] G. N. Yu, J. C. Huang, L. Li, R. T. Liu, J. Q. Cao, Q. Wu, S. Y. Zhang, C. X. Wang, W. J. Mei, W. J. Zheng, RSC Adv. 2018, 8, 30573.
| Crossref | GoogleScholarGoogle Scholar |
[28] F. A. Beckford, M. Shaloski, J. G. Leblanc, J. Thessing, L. C. Lewis-Alleyne, A. A. Holder, L. Li, N. P. Seeram, Dalton Trans. 2009, 10757.
| Crossref | GoogleScholarGoogle Scholar | 20023905PubMed |
[29] Z. Zhang, Q. Wu, X. H. Wu, F. Y. Sun, L. M. Chen, J. C. Chen, S. L. Yang, W. J. Mei, Eur. J. Med. Chem. 2014, 80, 316.
| Crossref | GoogleScholarGoogle Scholar | 24793882PubMed |
[30] J. Kljun, I. Bratsos, E. Alessio, G. Psomas, U. Repnik, M. Butinar, B. Turk, I. Turel, Inorg. Chem. 2013, 52, 9039.
| Crossref | GoogleScholarGoogle Scholar | 23886077PubMed |
[31] E. Gallori, C. Vettori, E. Alessio, F. G. Vilchez, R. Vilaplana, P. Orioli, A. Casini, L. Messori, Arch. Biochem. Biophys. 2000, 376, 156.
| Crossref | GoogleScholarGoogle Scholar | 10729201PubMed |
[32] R. Nomula, X. Wu, J. Zhao, N. R. Munirathnam, Mat. Sci. Eng. C 2017, 79, 710.
| Crossref | GoogleScholarGoogle Scholar |
[33] L. F. Tan, H. Chao, Inorg. Chim. Acta 2007, 360, 2016.
| Crossref | GoogleScholarGoogle Scholar |
[34] A. M. Pyle, R. Meshoyerer, C. V. Kumar, N. J. Turro, J. K. Barton, J. Am. Chem. Soc. 1989, 111, 3051.
| Crossref | GoogleScholarGoogle Scholar |
[35] X. W. Liu, L. C. Xu, H. Li, H. Chao, K. C. Zheng, L. N. Ji, J. Mol. Struct. 2009, 920, 163.
| Crossref | GoogleScholarGoogle Scholar |
[36] R. B. Nair, E. S. Teng, S. L. Kirkland, C. J. Murphy, Inorg. Chem. 1998, 37, 139.
| Crossref | GoogleScholarGoogle Scholar | 11670273PubMed |
[37] Y. P. Kumar, C. S. Devi, N. Deepika, N. M. Gabra, N. Jain, A. Srishailam, K. L. Reddy, S. Satyanarayana, Transit. Metal Chem. 2013, 38, 811.
| Crossref | GoogleScholarGoogle Scholar |
[38] J. G. Liu, B. H. Ye, H. Li, Q. X. Zhen, L. N. Ji, Y. H. Fu, J. Inorg. Biochem. 1999, 76, 265.
| Crossref | GoogleScholarGoogle Scholar |
[39] L. M. Chen, J. Liu, J. C. Chen, C. P. Tan, S. Shi, K. C. Zheng, L. N. Ji, J. Inorg. Biochem. 2008, 102, 330.
| Crossref | GoogleScholarGoogle Scholar | 17981336PubMed |
[40] J. L. Avila, A. Bretaña, A. Avila, Am. J. Trop. Med. Hyg. 1979, 28, 456.
| Crossref | GoogleScholarGoogle Scholar | 110160PubMed |
[41] A. K. F. Mårtensson, P. Lincoln, Phys. Chem. Chem. Phys. 2018, 20, 7920.
| Crossref | GoogleScholarGoogle Scholar |
[42] B. F. Li, X. M. Zhou, H. X. Liu, H. P. Deng, R. Huang, D. Xing, ACS Appl. Mater. Interfaces 2018, 10, 4494.
| Crossref | GoogleScholarGoogle Scholar |
[43] W. J. Mei, J. Liu, K. C. Zheng, L. J. Lin, H. Chao, A. X. Li, F. C. Yun, L. N. Ji, Dalton Trans. 2003, 7, 1352.
| Crossref | GoogleScholarGoogle Scholar |
[44] E. C. Johnson, B. P. Sullivan, D. J. Salmon, S. A. Adeyemi, T. J. Meyer, Inorg. Chem. 1978, 17, 2211.
| Crossref | GoogleScholarGoogle Scholar |
[45] Q. Wu, K. D. Zheng, S. Y. Liao, Y. Ding, Y. Li, W. J. Mei, Organometallics 2016, 35, 317.
| Crossref | GoogleScholarGoogle Scholar |
[46] Q. Wu, C. Fan, T. Chen, C. Liu, W. Mei, S. Chen, B. Wang, Y. Chen, W. Zheng, Eur. J. Med. Chem. 2013, 63, 57.
| Crossref | GoogleScholarGoogle Scholar | 23455057PubMed |
[47] M. M. Milutinović, Ž. D. Bugarčić, R. Wilhelm, New J. Chem. 2018, 42, 7607.
| Crossref | GoogleScholarGoogle Scholar |
[48] H. Zhang, F. Yang, Q. Wu, S. Y. Liao, P. Liu, W. J. Mei, L. Li, S. Y. Zhang, X. C. Wang, Med. Chem. 2016, 6, 137.
[49] W. J. Mei, Y. X. Liu, J. Liu, J. Li, K. C. Zheng, L. N. Ji, Transit. Metal Chem. 2005, 30, 82.
| Crossref | GoogleScholarGoogle Scholar |
[50] G. S. Fulcher, J. Am. Ceram. Soc. 1992, 75, 1043.
| Crossref | GoogleScholarGoogle Scholar |
[51] J. Kljun, A. K. Bytzek, W. Kandioller, C. Bartel, M. A. Jakupec, C. G. Hartinger, B. K. Keppler, I. Turel, Organometallics 2011, 30, 2506.
| Crossref | GoogleScholarGoogle Scholar | 21552495PubMed |