TiO2 Films Functionalized with ABDA for Enhanced Photoelectrochemical Performance
Penggang Chen A , Lulu Zhang A , Bingwen Liu B , Peng Chen A C and Pengfei Yan A CA Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.
B Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130021, China.
C Corresponding authors. Email: jehugu@gmail.com; yanpf@vip.sina.com
Australian Journal of Chemistry 72(6) 411-416 https://doi.org/10.1071/CH18577
Submitted: 22 November 2018 Accepted: 7 February 2019 Published: 27 February 2019
Abstract
Efficient photogenerated charge separation is needed for potential solar energy conversion and storage. Herein, we present the preparation and characterization of an optically active anthracence-based molecule 4,4′-(anthracene-2,6-diylbis(azanediyl))bis(4-oxobutanoic acid) (ABDA), whose coupling with TiO2 has been proven useful in the pursuit of enhanced photoelectrochemical (PEC) performance. Ultraviolet-visible absorption spectroscopy and PEC measurements indicated that the ABDA/TiO2 composite has extended the light absorption of TiO2 to the visible region and efficiently increased the charge separation. The photocurrent of ABDA/TiO2 is 1.8 times higher than that of pristine TiO2. This study has provided a method for the development of functionalized TiO2 with enhanced PEC behaviour for energy conversion applications.
References
[1] M. J. Katz, S. C. Riha, N. C. Jeong, A. B. F. Martinson, O. K. Farha, J. T. Hupp, Coord. Chem. Rev. 2012, 256, 2521.| Crossref | GoogleScholarGoogle Scholar |
[2] W. Li, Z. Wu, J. Wang, A. A. Elzatahry, D. Zhao, Chem. Mater. 2014, 26, 287.
| Crossref | GoogleScholarGoogle Scholar |
[3] L. Ling, L. Liu, Y. Feng, J. Zhu, Z. Bian, Chin. J. Catal. 2018, 39, 639.
| Crossref | GoogleScholarGoogle Scholar |
[4] Z. Bian, F. Cao, J. Zhu, H. Li, Environ. Sci. Technol. 2015, 49, 2418.
| Crossref | GoogleScholarGoogle Scholar | 25625860PubMed |
[5] W. Zhou, H. Fu, ChemCatChem 2013, 5, 885.
| Crossref | GoogleScholarGoogle Scholar |
[6] S. Zhang, X. Yang, Y. Numata, L. Han, Energy Environ. Sci. 2013, 6, 1443.
| Crossref | GoogleScholarGoogle Scholar |
[7] W. Zhou, W. Li, J. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, D. Zhao, J. Am. Chem. Soc. 2014, 136, 9280.
| Crossref | GoogleScholarGoogle Scholar | 24937035PubMed |
[8] M. Xu, Y. Chen, J. Qin, Y. Feng, W. Li, W. Chen, J. Zhu, H. Li, Z. Bian, Environ. Sci. Technol. 2018, 52, 13879.
| Crossref | GoogleScholarGoogle Scholar |
[9] Y. Feng, L. Ling, J. Nie, K. Han, X. Chen, Z. Bian, H. Li, Z. Wang, ACS Nano 2017, 11, 12411.
| Crossref | GoogleScholarGoogle Scholar | 29188991PubMed |
[10] Y. Feng, H. Li, L. Ling, S. Yan, D. Pan, H. Ge, H. Li, Z. Bian, Environ. Sci. Technol. 2018, 52, 7842.
| Crossref | GoogleScholarGoogle Scholar | 29925233PubMed |
[11] X. Chen, L. Liu, Y. Feng, L. Wang, Z. Bian, H. Li, Z. Wang, Mater. Today 2017, 20, 501.
| Crossref | GoogleScholarGoogle Scholar |
[12] Y. Zhang, Z. Xing, X. Liu, Z. Li, X. Wu, J. Jiang, M. Li, Q. Zhu, W. Zhou, ACS Appl. Mater. Interfaces 2016, 8, 26851.
| Crossref | GoogleScholarGoogle Scholar | 27652448PubMed |
[13] W. Zhou, F. Sun, K. Pan, G. Tian, H. Fu, Adv. Funct. Mater. 2011, 21, 1922.
| Crossref | GoogleScholarGoogle Scholar |
[14] W. Hu, W. Zhou, K. Zhang, X. Zhang, L. Wang, B. Jiang, G. Tian, D. Zhao, H. Fu, J. Mater. Chem. A Mater. Energy Sustain. 2016, 4, 7495.
| Crossref | GoogleScholarGoogle Scholar |
[15] Z. Xing, J. Zhang, J. Cui, J. Yin, T. Zhao, J. Kuang, Z. Xiu, N. Wan, W. Zhou, Appl. Catal. B 2018, 225, 452.
| Crossref | GoogleScholarGoogle Scholar |
[16] L. Hou, Q. Bu, S. Li, D. Wang, T. Xie, RSC Adv. 2016, 6, 99081.
| Crossref | GoogleScholarGoogle Scholar |
[17] J. Cheng, F. Zhang, K. Li, J. Li, X. Lu, J. Zheng, K. Guo, S. Yang, Q. Dong, Dyes Pigments 2017, 136, 97.
| Crossref | GoogleScholarGoogle Scholar |
[18] M. Yang, L. Zhang, B. Jin, L. Huang, Y. Gan, Appl. Surf. Sci. 2016, 364, 410.
| Crossref | GoogleScholarGoogle Scholar |
[19] A. T. O. Dal’Toé, G. L. Colpani, N. Padoin, M. A. Fiori, C. Soares, Appl. Surf. Sci. 2018, 441, 1057.
| Crossref | GoogleScholarGoogle Scholar |
[20] M. Wu, W. Huang, T. Lin, Y. Lu, Appl. Surf. Sci. 2019, 469, 34.
| Crossref | GoogleScholarGoogle Scholar |
[21] Y. Zhang, M. Xu, H. Li, H. Ge, Z. Bian, Appl. Catal. B 2018, 226, 213.
| Crossref | GoogleScholarGoogle Scholar |
[22] Y. Feng, L. Ling, Y. Wang, Z. Xu, F. Cao, H. Li, Z. Bian, Nano Energy 2017, 40, 481.
| Crossref | GoogleScholarGoogle Scholar |
[23] Z. Yao, M. Zhang, H. Wu, L. Yang, R. Li, P. Wang, J. Am. Chem. Soc. 2015, 137, 3799.
| Crossref | GoogleScholarGoogle Scholar | 25742441PubMed |
[24] L. Zhang, P. Chen, J. Wang, H. Li, W. Sun, P. Yan, J. Colloid Interface Sci. 2018, 530, 624.
| Crossref | GoogleScholarGoogle Scholar | 30005239PubMed |
[25] M. Liang, J. Chen, Chem. Soc. Rev. 2013, 42, 3453.
| Crossref | GoogleScholarGoogle Scholar | 23396530PubMed |
[26] Y. Wu, W. Zhu, S. M. Zakeeruddin, M. Grätzel, ACS Appl. Mater. Interfaces 2015, 7, 9307.
| Crossref | GoogleScholarGoogle Scholar | 25899976PubMed |
[27] F. Bureš, RSC Adv. 2014, 4, 58826.
| Crossref | GoogleScholarGoogle Scholar |
[28] M. Kivala, F. Diederich, Acc. Chem. Res. 2009, 42, 235.
| Crossref | GoogleScholarGoogle Scholar | 19061332PubMed |
[29] P. Bazylewski, K. H. Kim, D. H. Choi, G. S. Chang, J. Phys. Chem. B 2013, 117, 10658.
| Crossref | GoogleScholarGoogle Scholar | 23944650PubMed |
[30] H. Cha, D. S. Chung, S. Y. Bae, M. J. Lee, T. K. An, J. Hwang, K. H. Kim, Y. Kim, D. H. Choi, C. E. Park, Adv. Funct. Mater. 2013, 23, 1556.
| Crossref | GoogleScholarGoogle Scholar |
[31] P. Zhang, W. Dou, Z. Ju, L. Yang, X. Tang, W. Liu, Y. Wu, Org. Electron. 2013, 14, 915.
| Crossref | GoogleScholarGoogle Scholar |
[32] D. Chen, H. Xing, C. Wang, Z. Su, J. Mater. Chem. A Mater. Energy Sustain. 2016, 4, 2657.
| Crossref | GoogleScholarGoogle Scholar |
[33] Q. Xia, X. Yu, H. Zhao, S. Wang, H. Wang, Z. Guo, H. Xing, Cryst. Growth Des. 2017, 17, 4189.
| Crossref | GoogleScholarGoogle Scholar |
[34] H. Zhao, Q. Xia, H. Xing, D. Chen, H. Wang, ACS Sustainable Chem. Eng. 2017, 5, 4449.
| Crossref | GoogleScholarGoogle Scholar |
[35] X. Liang, Z. Guo, H. Wei, X. Liu, H. Lv, H. Xing, Chem. Commun. 2018, 54, 13002.
| Crossref | GoogleScholarGoogle Scholar |
[36] S. Wang, J. Liu, H. Zhao, Z. Guo, H. Xing, Y. Gao, Inorg. Chem. 2018, 57, 541.
| Crossref | GoogleScholarGoogle Scholar | 29280618PubMed |
[37] Z. Lu, S. J. Lord, H. Wang, W. E. Moerner, R. J. Twieg, J. Org. Chem. 2006, 71, 9651.
| Crossref | GoogleScholarGoogle Scholar | 17168582PubMed |
[38] Y. Cao, Z. Xing, Y. Shen, Z. Li, X. Wu, X. Yan, J. Zou, S. Yang, W. Zhou, Chem. Eng. J. 2017, 325, 199.
| Crossref | GoogleScholarGoogle Scholar |
[39] X. Zhang, J. Wang, W. Hu, K. Zhang, B. Sun, G. Tian, B. Jiang, K. Pan, W. Zhou, ChemCatChem 2016, 8, 3240.
| Crossref | GoogleScholarGoogle Scholar |
[40] S. Tan, Z. Xing, J. Zhang, Z. Li, X. Wu, J. Cui, J. Kuang, Q. Zhu, W. Zhou, J. Catal. 2018, 357, 90.
| Crossref | GoogleScholarGoogle Scholar |
[41] H. Wang, H. Feng, J. Li, Small 2014, 10, 2165.
| Crossref | GoogleScholarGoogle Scholar | 24577755PubMed |