Phosphorus-Based α-Amino Acid Mimetic for Enhanced Flame-Retardant Properties in an Epoxy Resin
Melissa K. Stanfield A , Filip Stojcevski A , Andreas Hendlmeier A , Russell J. Varley A , Jeronimo Carrascal B , Andres F. Osorio B , Daniel J. Eyckens A C and Luke C. Henderson A CA Carbon Nexus, Institute for Frontier Materials, Deakin University, Waurn Ponds, Vic. 3216, Australia.
B School of Civil Engineering, University of Queensland, St Lucia, Qld 4072, Australia.
C Corresponding authors. Email: dan.eyckens@deakin.edu.au; luke.henderson@deakin.edu.au
Australian Journal of Chemistry 72(3) 226-232 https://doi.org/10.1071/CH18527
Submitted: 25 October 2018 Accepted: 20 November 2018 Published: 12 December 2018
Abstract
This work demonstrates the introduction of a phosphonate moiety into a commonly used curing agent, 4,4′-diaminodiphenylmethane (DDM), via an α-aminophosphonate. This compound (DDMP) can be prepared and isolated in analytical purity in under 1 h and in good yield (71 %). Thermoset polymer (epoxy-derived) samples were prepared using a room-temperature standard cure (SC) and a post-cured (PC) protocol to encourage incorporation of the α-aminophosphonate into the polymer network, with improved flammability properties observed for the latter. Thermogravimetric analysis under a nitrogen atmosphere showed increased char yield at 600°C, and similar observations were made when analysis was conducted in air. Significant reductions in flammability are observed at very low phosphorus content (P% = 0.16–0.49 %), demonstrated by higher char yields (25.5 from 14.0 % in air), decreased burn time from ignition (60 to 24 s), and decreased mass loss after ignition (87.6 to 58.5 %). Limiting Oxygen Index for the neat polymer (P% = 0 %, 20.3 ± 0.8 %) increased with increasing α-aminophosphonate additive (P% = 0.16 %, 20.8 ± 0.6 %; P% = 0.32 %, 21.4 ± 0.4 %; P% = 0.49 %, 22.6 ± 0.8 %).
References
[1] S. Yang, Q. Zhang, Y. Hu, Polym. Degrad. Stabil. 2016, 133, 358.| Crossref | GoogleScholarGoogle Scholar |
[2] Y. Zhang, J. He, R. Yang, Polym. Degrad. Stabil. 2016, 125, 140.
| Crossref | GoogleScholarGoogle Scholar |
[3] B. Zhao, W.-J. Liang, J.-S. Wang, F. Li, Y.-Q. Liu, Polym. Degrad. Stabil. 2016, 133, 162.
| Crossref | GoogleScholarGoogle Scholar |
[4] P. S. Khobragade, D. P. Hansora, J. B. Naik, A. Chatterjee, Polym. Degrad. Stabil. 2016, 130, 194.
| Crossref | GoogleScholarGoogle Scholar |
[5] J. Courtat, F. Melis, J.-M. Taulemesse, V. Bounor-Legare, R. Sonnier, L. Ferry, P. Cassagnau, Polym. Degrad. Stabil. 2015, 119, 260.
| Crossref | GoogleScholarGoogle Scholar |
[6] Y. Feng, C. He, Y. Wen, Y. Ye, X. Zhou, X. Xie, Y.-W. Mai, Composites, Part A 2017, 103, 74.
| Crossref | GoogleScholarGoogle Scholar |
[7] T. Randoux, J. C. Vanovervelt, H. Van den Bergen, G. Camino, Prog. Org. Coat. 2002, 45, 281.
| Crossref | GoogleScholarGoogle Scholar |
[8] N. Brown, M. Aggleton, Reinf. Plast. 1999, 43, 44.
| Crossref | GoogleScholarGoogle Scholar |
[9] Phosphorus Flame Retardants for Composites (Ed. S. Horold), International SAMPE Technical Conference 1999.
[10] B. Costes, Y. Henry, G. Muller, A. Lindsay, M. Buckingham, D. Stevenson, G. Camino, S. Levchik, L. Costa, P. L. Chambers, C. M. Chambers, A. C. Kennedy, Polym. Degrad. Stabil. 1996, 54, 305.
| Crossref | GoogleScholarGoogle Scholar |
[11] S. Y. Lu, I. Hamerton, Prog. Polym. Sci. 2002, 27, 1661.
| Crossref | GoogleScholarGoogle Scholar |
[12] G. E. Zaikov, S. M. Lomakin, Polym. Degrad. Stabil. 1996, 54, 223.
| Crossref | GoogleScholarGoogle Scholar |
[13] A. Toldy, B. Szolnoki, G. Marosi, Polym. Degrad. Stabil. 2011, 96, 371.
| Crossref | GoogleScholarGoogle Scholar |
[14] A. Toldy, A. Szabó, C. Novák, J. Madarász, A. Tóth, G. Marosi, Polym. Degrad. Stabil. 2008, 93, 2007.
| Crossref | GoogleScholarGoogle Scholar |
[15] R. Jian, P. Wang, L. Xia, X. Zheng, J. Anal. Appl. Pyrolysis 2017, 127, 360.
| Crossref | GoogleScholarGoogle Scholar |
[16] R. Jian, P. Wang, W. Duan, L. Xia, X. Zheng, Mater. Lett. 2017, 204, 77.
| Crossref | GoogleScholarGoogle Scholar |
[17] S. Yang, J. Wang, S. Huo, L. Cheng, M. Wang, Polym. Degrad. Stabil. 2015, 119, 251.
| Crossref | GoogleScholarGoogle Scholar |
[18] W. Liu, R. J. Varley, G. P. Simon, Polymer 2006, 47, 2091.
| Crossref | GoogleScholarGoogle Scholar |
[19] P. M. Hergenrother, C. M. Thompson, J. G. Smith, J. W. Connell, J. A. Hinkley, R. E. Lyon, R. Moulton, Polymer 2005, 46, 5012.
| Crossref | GoogleScholarGoogle Scholar |
[20] D. Enescu, A. Frache, M. Lavaselli, O. Monticelli, F. Marino, Polym. Degrad. Stabil. 2013, 98, 297.
| Crossref | GoogleScholarGoogle Scholar |
[21] L. Costes, F. Laoutid, L. Dumazert, J.-M. Lopez-Cuesta, S. Brohez, C. Delvosalle, P. Dubois, Polym. Degrad. Stabil. 2015, 119, 217.
| Crossref | GoogleScholarGoogle Scholar |
[22] G. Dorez, A. Taguet, L. Ferry, J.-M. Lopez Cuesta, Polym. Degrad. Stabil. 2014, 102, 152.
| Crossref | GoogleScholarGoogle Scholar |
[23] A. Toldy, P. Anna, I. Csontos, A. Szabó, G. Marosi, Polym. Degrad. Stabil. 2007, 92, 2223.
| Crossref | GoogleScholarGoogle Scholar |
[24] C. Nguyen, J. Kim, Polym. Degrad. Stabil. 2008, 93, 1037.
| Crossref | GoogleScholarGoogle Scholar |
[25] X. Wang, Q. Zhang, Eur. Polym. J. 2004, 40, 385.
| Crossref | GoogleScholarGoogle Scholar |
[26] H. S. Hendriks, R. H. S. Westerink, Neurotoxicol. Teratol. 2015, 52, 248.
| Crossref | GoogleScholarGoogle Scholar |
[27] J. Green, Polym. Degrad. Stabil. 1996, 54, 189.
| Crossref | GoogleScholarGoogle Scholar |
[28] W. Liu, R. J. Varley, G. P. Simon, Polymer 2007, 48, 2345.
| Crossref | GoogleScholarGoogle Scholar |
[29] K. Wang, A. B. Morgan, V. Benin, Fire Mater. 2017, 41, 973.
| Crossref | GoogleScholarGoogle Scholar |
[30] D. Hoang, T. Nguyen, H. An, J. Kim, Macromol. Res. 2016, 24, 537.
| Crossref | GoogleScholarGoogle Scholar |
[31] Y. Qin, R. Xing, S. Liu, H. Yu, K. Li, L. Hu, P. Li, Int. J. Biol. Macromol. 2014, 63, 83.
| Crossref | GoogleScholarGoogle Scholar |
[32] M.-Y. Ye, G.-Y. Yao, Y.-M. Pan, Z.-X. Liao, Y. Zhang, H.-S. Wang, Eur. J. Med. Chem. 2014, 83, 116.
| Crossref | GoogleScholarGoogle Scholar |
[33] E.-R. S. Kenawy, M. M. Azaam, K. M. Saad-Allah, Arab. J. Chem. 2015, 8, 427.
| Crossref | GoogleScholarGoogle Scholar |
[34] L. Zhang, K. Xu, M. Chen, X. Cao, D. Chen, Petrochem. Technol. 2006, 774.
[35] D. J. Eyckens, L. C. Henderson, RSC Adv. 2017, 7, 27900.
| Crossref | GoogleScholarGoogle Scholar |
[36] P. Yoganantharajah, D. J. Eyckens, J. L. Pedrina, L. C. Henderson, Y. Gibert, New J. Chem. 2016, 40, 6599.
| Crossref | GoogleScholarGoogle Scholar |
[37] D. J. Eyckens, M. E. Champion, B. L. Fox, P. Yoganantharajah, Y. Gibert, T. Welton, L. C. Henderson, Eur. J. Org. Chem. 2016, 913.
| Crossref | GoogleScholarGoogle Scholar |
[38] D. J. Eyckens, B. Demir, T. R. Walsh, T. Welton, L. C. Henderson, Phys. Chem. Chem. Phys. 2016, 18, 13153.
| Crossref | GoogleScholarGoogle Scholar |
[39] S. V. Levchik, E. D. Weil, J. Fire Sci. 2006, 24, 345.
| Crossref | GoogleScholarGoogle Scholar |
[40] S. Gaan, G. Sun, Polym. Degrad. Stabil. 2007, 92, 968.
| Crossref | GoogleScholarGoogle Scholar |