Binary Ionic Liquid System for Direct Cellulose Etherification*
Takeshi Kakibe A B , Satoshi Nakamura A , Kiyokazu Amakuni A and Hajime Kishi A
+ Author Affiliations
- Author Affiliations
A Department of Chemical Engineering, University of Hyogo, 2167, Shosha, Himeji, Hyogo 671-2201, Japan.
B Corresponding author. Email: kakibet@eng.u-hyogo.ac.jp
Australian Journal of Chemistry 72(2) 101-105 https://doi.org/10.1071/CH18378
Submitted: 31 July 2018 Accepted: 30 October 2018 Published: 23 November 2018
Abstract
Etherification of cellulose was performed using a mixture of ionic liquids (ILs) playing roles in both cellulose dissolution and catalysis. We investigated the effects of the reaction time and the ratio of these ILs in the mixture. Cellulose etherification was performed in these IL mixtures. The proportion of propoxy cellulose exceeded 2.5 after 24 h.
References
[1] S. A. Forsyth, J. M. Pringle, D. R. MacFarlane, Aust. J. Chem. 2004, 57, 113.| Crossref | GoogleScholarGoogle Scholar |
[2] H. Ohno, Y. Fukaya, Chem. Lett. 2009, 38, 2.
| Crossref | GoogleScholarGoogle Scholar |
[3] J. H. Davis, Chem. Lett. 2004, 33, 1072.
| Crossref | GoogleScholarGoogle Scholar |
[4] X. Liao, S.-G. Wang, X. Xiang, Y. Zhu, X. She, Y. Li, Fuel Process. Technol. 2012, 96, 74.
| Crossref | GoogleScholarGoogle Scholar |
[5] J. S. Wilkes, J. Mol. Catal. Chem. 2004, 214, 11.
| Crossref | GoogleScholarGoogle Scholar |
[6] J. Gui, Y. Deng, Z. Hu, Z. Sun, Tetrahedron Lett. 2004, 45, 2681.
| Crossref | GoogleScholarGoogle Scholar |
[7] T. Kakibe, N. Yoshimoto, M. Egashira, M. Morita, Electrochem. Commun. 2010, 12, 1630.
| Crossref | GoogleScholarGoogle Scholar |
[8] M. A. Navarra, K. Fujimura, M. Sgambetterra, A. Tsurumaki, S. Panero, N. Nakamura, H. Ohno, B. Scrosati, ChemSusChem 2017, 10, 2496.
| Crossref | GoogleScholarGoogle Scholar |
[9] H. Kishi, A. Fujita, H. Miyazaki, S. Matsuda, A. Murakami, J. Appl. Polym. Sci. 2006, 102, 2285.
| Crossref | GoogleScholarGoogle Scholar |
[10] O. A. El Seoud, G. A. Marson, G. T. Ciacco, E. Frollini, Macromol. Chem. Phys. 2000, 201, 882.
| Crossref | GoogleScholarGoogle Scholar |
[11] T. Nishino, I. Matsuda, K. Hirao, Macromolecules 2004, 37, 7683.
| Crossref | GoogleScholarGoogle Scholar |
[12] R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, J. Am. Chem. Soc. 2002, 124, 4974.
| Crossref | GoogleScholarGoogle Scholar |
[13] H. Zhang, Z. G. Wang, Z. N. Zhang, J. Wu, J. Zhang, J. S. He, Adv. Mater. 2007, 19, 698.
| Crossref | GoogleScholarGoogle Scholar |
[14] J. Vitz, T. Erdmenger, C. Haensch, U. S. Schubert, Green Chem. 2009, 11, 417.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. Wu, J. Zhang, H. Zhang, J. He, Q. Ren, M. Guo, Biomacromolecules 2004, 5, 266.
| Crossref | GoogleScholarGoogle Scholar |
[16] Y. Yang, H. Xie, E. Liu, Green Chem. 2014, 16, 3018.
| Crossref | GoogleScholarGoogle Scholar |
[17] H. Nawaz, P. A. R. Pires, E. P. G. Arêas, N. I. Malek, O. A. El Seoud, Macromol. Chem. Phys. 2015, 216, 2368.
| Crossref | GoogleScholarGoogle Scholar |
[18] S. Barthel, T. Heinze, Green Chem. 2006, 8, 301.
| Crossref | GoogleScholarGoogle Scholar |
[19] A. C. Cole, J. L. Jensen, I. Ntai, K. T. Tran, K. J. Weaver, D. C. Fores, H. Davis, J. Am. Chem. Soc. 2002, 124, 5962.
| Crossref | GoogleScholarGoogle Scholar |
[20] A. S. Amarasekara, Chem. Rev. 2016, 116, 6133.
| Crossref | GoogleScholarGoogle Scholar |
[21] T. Kakibe, J. Hishi, N. Yoshimoto, M. Egashira, M. Morita, J. Power Sources 2012, 203, 195.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. Kagimoto, K. Noguchi, K. Murata, K. Fukumoto, N. Nakamura, H. Ohno, Chem. Lett. 2008, 37, 1026.
| Crossref | GoogleScholarGoogle Scholar |
[23] Q. Zhou, W. A. Henderson, G. B. Appetecchi, S. Passerini, J. Phys. Chem. C 2010, 114, 6201.
| Crossref | GoogleScholarGoogle Scholar |
[24] T. Kakibe, S. Nakamura, W. Mizuta, H. Kishi, Chem. Lett. 2017, 46, 737.
| Crossref | GoogleScholarGoogle Scholar |
[25] Arce A.Earle M. J.Katdare S. P.Rodríguez H.Seddon K. R.2006 Chem. Commum.
[26] R. C. Remsing, R. P. Swatloski, R. D. Rogers, G. Moyna, Chem. Commun. 2006, 1271.
| Crossref | GoogleScholarGoogle Scholar |
[27] J. Zhang, H. Zhang, J. Wu, J. Zhang, J. He, J. Xiang, Phys. Chem. Chem. Phys. 2010, 12, 1941.
| Crossref | GoogleScholarGoogle Scholar |
[28] Y. Fukaya, K. Hayashi, M. Wada, H. Ohno, Green Chem. 2008, 10, 44.
| Crossref | GoogleScholarGoogle Scholar |
[29] L. Crowhurst, P. R. Mawdsley, J. M. Perez-Arlandis, P. A. Salter, T. Welton, Phys. Chem. Chem. Phys. 2003, 5, 2790.
| Crossref | GoogleScholarGoogle Scholar |
[30] S. N. Baker, G. A. Baker, F. V. Bright, Green Chem. 2002, 4, 165.
| Crossref | GoogleScholarGoogle Scholar |
[31] M. Schwanninger, J. C. Rodrigues, H. Pereira, B. Hinterstoisser, Vib. Spectrosc. 2004, 36, 23.
| Crossref | GoogleScholarGoogle Scholar |
[32] L. M. Proniewicz, C. Paluszkiewicz, A. Weselucha-Bircyñska, H. Majcherczyk, A. Barañski, A. Konieczna, J. Mol. Struct. 2001, 596, 163.
| Crossref | GoogleScholarGoogle Scholar |
[33] R. Kakuchi, M. Yamaguchi, T. Endo, Y. Shibata, K. Ninomiya, T. Ikai, K. Maeda, K. Takahashi, RSC Adv. 2015, 5, 72071.
| Crossref | GoogleScholarGoogle Scholar |
[34] Q. Wu, M. Wang, Y. Hao, H. Li, Y. Zhao, Q. Jiao, Ind. Eng. Chem. Res. 2014, 53, 16254.
| Crossref | GoogleScholarGoogle Scholar |
[35] D.-J. Tao, J. Wu, Z.-Z. Wang, Z.-H. Lu, Z. Yang, X.-S. Chen, RSC Adv. 2014, 4, 1.
| Crossref | GoogleScholarGoogle Scholar |