Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Microheterogeneity in Ionic Liquid Mixtures: Hydrogen Bonding, Dispersed Ions, and Dispersed Ion Clusters

Andrea Mezzetta A , Maria J. Rodriguez Douton A , Lorenzo Guazzelli A , Christian Silvio Pomelli A and Cinzia Chiappe A B
+ Author Affiliations
- Author Affiliations

A Dipartimento di Farmacia, Università di Pisa, via Bonanno 33, 56126 Pisa, Italy.

B Corresponding author. Email: cinzia.chiappe@unipi.it

Australian Journal of Chemistry 72(2) 106-111 https://doi.org/10.1071/CH18375
Submitted: 31 July 2018  Accepted: 31 October 2018   Published: 23 November 2018

Abstract

Mixtures of ionic liquids (ILs) having a common ion but differing in the identity of the anion or cation represent highly interesting media. By varying the composition, one can successfully modulate specific physicochemical, structural, and biological properties. The molecular interactions (coulombic, hydrogen-bonding, van der Waals, and π–π intermolecular forces) that determine the three-dimensional structure of pure ILs can indeed be modified by the addition of another IL. In this context, we present here a 1H NMR, Fourier transform (FT)-IR, thermogravimetric, and solvatochromic study of the structural features of IL binary mixtures based on a common imidazolium cation ([CnC1im]+) and anions of different size and hydrogen-bond acceptor ability. For each mixture, the analyses were carried out at different molar ratios of the two components.


References

[1]  T. Welton, Biophys. Rev. 2018, 10, 691.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  K. Fumino, R. Ludwig, J. Mol. Liq. 2014, 192, 94.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  C. Chiappe, Monatsh. Chem. 2007, 138, 1035.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  J. N. A Canongia Lopes, A. A. H. Pádua, J. Phys. Chem. B 2006, 110, 3330.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  R. Hayes, G. G. Warr, R. Atkin, Chem. Rev. 2015, 115, 6357.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  C. Chiappe, C. S. Pomelli, Eur. J. Org. Chem. 2014, 6120.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) L. F. Lepre, J. Szala-Bilnik, A. A. H. Pádua, M. Traïkia, R. A. Ando, M. F. Costa Gomes, Phys. Chem. Chem. Phys. 2016, 18, 23285.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) I. Otero, L. F. Lepre, A. Dequidt, P. Husson, M. F. Costa Gomes, J. Phys. Chem. B 2017, 121, 9725.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) J. N. Canongia Lopes, J. M. S. S. Esperanca, A. M. de Ferro, A. B. Pereiro, N. V. Plechkova, L. P. N. Rebelo, K. R. Seddon, I. Vazquez-Fernandez, J. Phys. Chem. B 2016, 120, 2397.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. N. Canongia Lopes, T. C. Cordeiro, J. M. S. S. Esperança, H. J. R. Guedes, S. Huq, L. P. N. Rebelo, K. R. Seddon, J. Phys. Chem. B 2005, 109, 3519.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. Annat, D. R. MacFarlane, M. Forsyth, J. Phys. Chem. B 2007, 111, 9018.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. Arce, M. J. Earle, S. P. Katdare, H. Rodríguez, K. R. Seddon, Chem. Commun. 2006, 2548.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) H. Niedermeyer, J. P. Hallett, I. J. Villar-Garcia, P. A. Hunt, T. Welton, Chem. Soc. Rev. 2012, 41, 7780.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) G. Chatel, J. F. B. Pereira, V. Debbeti, H. Wang, R. D. Rogers, Green Chem. 2014, 16, 2051.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  M. T. Clough, C. R. Crick, J. Graesvik, P. A. Hunt, H. Niedermeyer, T. Welton, O. P. Whitaker, Chem. Sci. 2015, 6, 1101.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  K. Fumino, A. Bonsa, B. Golub, D. Paschek, R. Ludwig, ChemPhysChem 2015, 16, 299.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  J. J. Fillion, J. F. Brennecke, J. Chem. Eng. Data 2017, 62, 1884.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  R. P. Matthews, I. J. Villar-Garcia, C. C. Weber, J. Griffith, F. Cameron, J. P. Hallett, P. A. Hunt, T. Welton, Phys. Chem. Chem. Phys. 2016, 18, 8608.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  S. Cha, D. Kim, Phys. Chem. Chem. Phys. 2015, 17, 29786.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  R. Bini, O. Bortolini, C. Chiappe, D. Pieraccini, T. Siciliano, J. Phys. Chem. B 2007, 111, 598.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S. Cha, D. Kim, J. Chem. Phys. 2018, 148, 193827.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  D. Xiao, J. R. Rajian, L. G. Hines, S. Li, R. A. Bartsch, E. L. Quitevis, J. Phys. Chem. B 2008, 112, 13316.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  C. Chiappe, C. S. Pomelli, S. Rajamani, J. Phys. Chem. B 2011, 115, 9653.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  A. Stark, M. Brehm, M. Brüssel, S. B. C. Lehmann, A. S. Pensado, M. Schöppke, B. Kirchner, Top. Curr. Chem. 2014, 351, 149.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  C. Chiappe, A. Mezzetta, C. S. Pomelli, M. Puccini, M. Seggiani, Org. Process Res. Dev. 2016, 20, 2080.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  R. Bini, C. Chiappe, V. Llopsis Mestre, C. S. Pomelli, T. Welton, Org. Biomol. Chem. 2008, 6, 2522.
         | Crossref | GoogleScholarGoogle Scholar |