Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Progress Towards Direct Hydrogen Peroxide Fuel Cells (DHPFCs) as an Energy Storage Concept*

Ciaran J. McDonnell-Worth https://orcid.org/0000-0002-6359-3806 A B and Douglas R. MacFarlane A
+ Author Affiliations
- Author Affiliations

A Faculty of Science, Monash University, Scenic Boulevard and Wellington Road, Clayton, Vic. 3800, Australia.

B Corresponding author. Email: ciaran.mcdonnell-worth@monash.edu




Ciaran McDonnell-Worth is a Research Fellow in the MacFarlane group at Monash University. He is a B.Sc. (Hons) graduate and obtained his Ph.D. degree from Monash University. His research interests are in electrogenerated fuels and clean energy storage.



Professor Doug MacFarlane is an Australian Laureate Fellow and leader of the Energy Program in the Australian Centre for Electromaterials Science. He is one of the pioneers in the field of ionic liquids and his group along with collaborators in Australia and worldwide has published more than 650 papers and 30 patents. Professor MacFarlane is a B.Sc. (Hons) graduate of Victoria University of Wellington and received his Ph.D. degree from Purdue University. He was appointed Professor of Chemistry at Monash University in 1995. He was elected to the Australian Academy of Science in 2007 and in 2018 was awarded the Academy’s Craig Medal for achievements in chemistry He was elected to the Australian Academy of Technological Sciences and Engineering in 2009. He is an International Fellow of the Queen’s University Belfast, a Visiting Professor of the Chinese Academy of Sciences, and the Huangshan Distinguished Visiting Professor at HuFei University of Technology.

Australian Journal of Chemistry 71(10) 781-788 https://doi.org/10.1071/CH18328
Submitted: 9 July 2018  Accepted: 9 August 2018   Published: 7 September 2018

Abstract

This review introduces the concept of direct H2O2 fuel cells and discusses the merits of these systems in comparison with other ‘clean-energy’ fuels. Through electrochemical methods, H2O2 fuel can be generated from environmentally benign energy sources such as wind and solar. It also produces only water and oxygen when it is utilised in a direct H2O2 fuel cell, making it a fully reversible system. The electrochemical methods for H2O2 production are discussed here as well as the recent research aimed at increasing the efficiency and power of direct H2O2 fuel cells.


References

[1]  S. Shafiee, E. Topal, Energy Policy 2009, 37, 181.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  T. Zielinski, in Impact of Climate Changes on Marine Environments (Eds J. M. Węsławski, K. Kuliński, T. Zielinski) 2015, Ch. 1, 1–148 (Springer: Berlin).

[3]  N. V. Patel, Foreign Policy 2015, 213, 28.

[4]  J. Tollefson, Nature 2010, 464, 1262.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  B. G. Ram, K. K. Pant, in Hydrogen Fuel (Ed. B. G. Ram) 2008, Ch. 1, pp. 2–32 (CRC Press: Boca Raton, FL).

[6]  A. Szyszka, Int. J. Hydrogen Energy 1998, 23, 849.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  S. Sharma, S. K. Ghoshal, Renew. Sustain. Energy Rev. 2015, 43, 1151.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  R. Ortiz Cebolla, B. Acosta, P. Moretto, N. Frischauf, F. Harskamp, C. Bonato, D. Baraldi, Int. J. Hydrogen Energy 2014, 39, 6261.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  M. Royle, D. Willoughby, Process Saf. Environ. Prot. 2011, 89, 452.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  L. Ma, D. J. Mihalcik, W. Lin, J. Am. Chem. Soc. 2009, 131, 4610.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  I. A. Ibarra, S. Yang, X. Lin, A. J. Blake, P. J. Rizkallah, H. Nowell, D. R. Allan, N. R. Champness, P. Hubberstey, M. Schroder, Chem. Commun. 2011, 8304.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  Y. Yan, S. Yang, A. J. Blake, M. Schröder, Acc. Chem. Res. 2014, 47, 296.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  M. Lototskyy, V. A. Yartys, J. Alloys Compd. 2015, 645, S365.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  F. Schuth, B. Bogdanovic, M. Felderhoff, Chem. Commun. 2004, 2249.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  C. M. Rangel, V. R. Fernandes, Y. Slavkov, L. Bozukov, Int. J. Hydrogen Energy 2009, 34, 4587.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  I. P. Jain, Int. J. Hydrogen Energy 2009, 34, 7368.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  S. Niaz, T. Manzoor, A. H. Pandith, Renew. Sustain. Energy Rev. 2015, 50, 457.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  U. Suess Hans, Pulp Bleaching Today 2010 (De Gruyter: Berlin).

[19]  K. Sato, R. Noyori, Science 1998, 281, 1646.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  A. Aleboyeh, H. Aleboyeh, Y. Moussa, Dyes Pigments 2003, 57, 67.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  P. Blach, Z. Böstrom, S. Franceschi-Messant, A. Lattes, E. Perez, I. Rico-Lattes, Tetrahedron 2010, 66, 7124.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  H. Egami, T. Oguma, T. Katsuki, J. Am. Chem. Soc. 2010, 132, 5886.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  L. Cui, S. Furuhashi, Y. Tachikawa, N. Tada, T. Miura, A. Itoh, Tetrahedron Lett. 2013, 54, 162.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  N. A. Choudhury, R. K. Raman, S. Sampath, A. K. Shukla, J. Power Sources 2005, 143, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  S. J. Lao, H. Y. Qin, L. Q. Ye, B. H. Liu, Z. P. Li, J. Power Sources 2010, 195, 4135.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  G. Agladze, P. Nikoleishvili, V. Kveselava, G. Tsurtsumia, G. Gorelishvili, D. Gogoli, I. Kakhniashvili, J. Power Sources 2012, 218, 46.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  D. M. F. Santos, P. G. Saturnino, R. F. M. Lobo, C. A. C. Sequeira, J. Power Sources 2012, 208, 131.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  R. S. Disselkamp, Int. J. Hydrogen Energy 2010, 35, 1049.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  S. Haji, B. Benstaali, N. Al-Bastaki, Chem. Eng. J. 2011, 168, 134.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  V. M. Daskalaki, E. S. Timotheatou, A. Katsaounis, D. Kalderis, Desalination 2011, 274, 200.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  S. Yang, P. Wang, X. Yang, L. Shan, W. Zhang, X. Shao, R. Niu, J. Hazard. Mater. 2010, 179, 552.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  D. Sloboda-Rozner, P. L. Alsters, R. Neumann, J. Am. Chem. Soc. 2003, 125, 5280.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  K.-P. Ho, K.-Y. Wong, T. H. Chan, Tetrahedron 2006, 62, 6650.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  Y. Xu, N. R. B. J. Khaw, Z. Li, Green Chem. 2009, 11, 2047.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  P. Jin, Z. Zhao, Z. Dai, D. Wei, M. Tang, X. Wang, Catal. Today 2011, 175, 619.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  J. Kim, S. Jung, S. Park, S. Park, Tetrahedron Lett. 2011, 52, 2866.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  F. Nikbakht, A. Heydari, Tetrahedron Lett. 2014, 55, 2513.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  Q. Chen, J. Clean. Prod. 2006, 14, 708.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  M. Giomo, A. Buso, P. Fier, G. Sandonà, B. Boye, G. Farnia, Electrochim. Acta 2008, 54, 808.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  G. Fioroni, F. Fringuelli, F. Pizzo, L. Vaccaro, Green Chem. 2003, 5, 425.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  G. B. Payne, J. Am. Chem. Soc. 1959, 81, 4901.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  I. Oller, S. Malato, J. A. Sánchez-Pérez, Sci. Total Environ. 2011, 409, 4141.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  I. Yamanaka, T. Onisawa, T. Hashimoto, T. Murayama, ChemSusChem 2011, 4, 494.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  M. A. Ghanem, A. M. Al-Mayouf, M. N. Shaddad, F. Marken, Electrochim. Acta 2015, 174, 557.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  A. von Weber, E. T. Baxter, H. S. White, S. L. Anderson, J. Phys. Chem. C 2015, 119, 11160.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  M. Gara, E. Laborda, P. Holdway, A. Crossley, C. J. V. Jones, R. G. Compton, Phys. Chem. Chem. Phys. 2013, 15, 19487.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  A. Ohma, K. Fushinobu, K. Okazaki, Electrochim. Acta 2010, 55, 8829.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  M. Gennari, D. Brazzolotto, J. Pécaut, M. V. Cherrier, C. J. Pollock, S. DeBeer, M. Retegan, D. A. Pantazis, F. Neese, M. Rouzières, R. Clérac, C. Duboc, J. Am. Chem. Soc. 2015, 137, 8644.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  L. R. Aveiro, A. G. M. da Silva, V. S. Antonin, E. G. Candido, L. S. Parreira, R. S. Geonmonond, I. C. de Freitas, M. R. V. Lanza, P. H. C. Camargo, M. C. Santos, Electrochim. Acta 2018, 268, 101.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  W. R. P. Barros, Q. Wei, G. Zhang, S. Sun, M. R. V. Lanza, A. C. Tavares, Electrochim. Acta 2015, 162, 263.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  J. S. Jirkovský, I. Panas, E. Ahlberg, M. Halasa, S. Romani, D. J. Schiffrin, J. Am. Chem. Soc. 2011, 133, 19432.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida, B. Wickman, M. Escudero-Escribano, E. A. Paoli, R. Frydendal, T. W. Hansen, I. Chorkendorff, I. E. L. Stephens, J. Rossmeisl, Nat. Mater. 2013, 12, 1137.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  S. Kakuda, R. L. Peterson, K. Ohkubo, K. D. Karlin, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 6513.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  M. Campos, W. Siriwatcharapiboon, R. J. Potter, S. L. Horswell, Catal. Today 2013, 202, 135.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  I. Yamanaka, R. Ichihashi, T. Iwasaki, N. Nishimura, T. Murayama, W. Ueda, S. Takenaka, Electrochim. Acta 2013, 108, 321.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  K. Mase, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 2800.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  G. Göransson, E. Ahlberg, Electrochim. Acta 2014, 146, 638.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  S. Chen, Z. Chen, S. Siahrostami, D. Higgins, D. Nordlund, D. Sokaras, T. R. Kim, Y. Liu, X. Yan, E. Nilsson, R. Sinclair, J. K. Nørskov, T. F. Jaramillo, Z. Bao, J. Am. Chem. Soc. 2018, 140, 7851.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  Y. Sun, I. Sinev, W. Ju, A. Bergmann, S. Dresp, S. Kühl, C. Spöri, H. Schmies, H. Wang, D. Bernsmeier, B. Paul, R. Schmack, R. Kraehnert, B. Roldan Cuenya, P. Strasser, ACS Catal. 2018, 8, 2844.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  S. Kabir, K. Artyushkova, A. Serov, P. Atanassov, ACS Appl. Mater. Interfaces 2018, 10, 11623.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  C. Di Bari, S. Shleev, A. L. De Lacey, M. Pita, Bioelectrochemistry 2016, 107, 30.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  A. Bonakdarpour, M. Lefevre, R. Yang, F. Jaouen, T. Dahn, J.-P. Dodelet, J. R. Dahn, Electrochem. Solid-State Lett. 2008, 11, B105.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  V. G. Khomenko, K. V. Lykhnytskyi, V. Z. Barsukov, Electrochim. Acta 2013, 104, 391.
         | Crossref | GoogleScholarGoogle Scholar |

[64]  T.-P. Fellinger, F. Hasché, P. Strasser, M. Antonietti, J. Am. Chem. Soc. 2012, 134, 4072.
         | Crossref | GoogleScholarGoogle Scholar |

[65]  T. Murayama, I. Yamanaka, J. Phys. Chem. C 2011, 115, 5792.
         | Crossref | GoogleScholarGoogle Scholar |

[66]  I. Yamanaka, T. Murayama, Angew. Chem. Int. Ed. 2008, 47, 1900.
         | Crossref | GoogleScholarGoogle Scholar |

[67]  V. Čolić, S. Yang, Z. Révay, I. E. L. Stephens, I. Chorkendorff, Electrochim. Acta 2018, 272, 192.
         | Crossref | GoogleScholarGoogle Scholar |

[68]  F. Yu, Y. Chen, H. Ma, New J. Chem. 2018, 42, 4485.
         | Crossref | GoogleScholarGoogle Scholar |

[69]  V. L. Kornienko, G. A. Kolyagin, G. V. Kornienko, V. A. Parfenov, I. V. Ponomarenko, Russ. J. Electrochem. 2018, 54, 258.
         | Crossref | GoogleScholarGoogle Scholar |

[70]  Y. Liu, X. Quan, X. Fan, H. Wang, S. Chen, Angew. Chem. Int. Ed. 2015, 54, 6837.
         | Crossref | GoogleScholarGoogle Scholar |

[71]  B. B. Blizanac, P. N. Ross, N. M. Markovic, Electrochim. Acta 2007, 52, 2264.
         | Crossref | GoogleScholarGoogle Scholar |

[72]  J. F. Pérez, A. Galia, M. A. Rodrigo, J. Llanos, S. Sabatino, C. Sáez, B. Schiavo, O. Scialdone, Electrochim. Acta 2017, 248, 169.
         | Crossref | GoogleScholarGoogle Scholar |

[73]  Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Angew. Chem. Int. Ed. 2014, 53, 13454.
         | Crossref | GoogleScholarGoogle Scholar |

[74]  C. Kormann, D. W. Bahnemann, M. R. Hoffmann, Environ. Sci. Technol. 1988, 22, 798.
         | Crossref | GoogleScholarGoogle Scholar |

[75]  N. Her, J.-S. Park, Y. Yoon, Chem. Eng. J. 2011, 166, 184.
         | Crossref | GoogleScholarGoogle Scholar |

[76]  K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, ACS Energy Lett. 2016, 1, 913.
         | Crossref | GoogleScholarGoogle Scholar |

[77]  Y. Isaka, K. Oyama, Y. Yamada, T. Suenobu, S. Fukuzumi, Catal. Sci. Technol. 2016, 6, 681.
         | Crossref | GoogleScholarGoogle Scholar |

[78]  A. Izgorodin, E. Izgorodin, D. R. MacFarlane, Energy Environ. Sci. 2012, 5, 9496.
         | Crossref | GoogleScholarGoogle Scholar |

[79]  C. McDonnell-Worth, D. R. MacFarlane, RSC Adv. 2014, 4, 30551.
         | Crossref | GoogleScholarGoogle Scholar |

[80]  K. Fuku, K. Sayama, Chem. Commun. 2016, 5406.
         | Crossref | GoogleScholarGoogle Scholar |

[81]  Y. Ando, T. Tanaka, Int. J. Hydrogen Energy 2004, 29, 1349.
         | Crossref | GoogleScholarGoogle Scholar |

[82]  N. Luo, G. H. Miley, K.-J. Kim, R. Burton, X. Huang, J. Power Sources 2008, 185, 685.
         | Crossref | GoogleScholarGoogle Scholar |

[83]  R. R. Bessette, J. M. Cichon, D. W. Dischert, E. G. Dow, J. Power Sources 1999, 80, 248.
         | Crossref | GoogleScholarGoogle Scholar |

[84]  X. Li, D. Heryadi, A. A. Gewirth, Langmuir 2005, 21, 9251.
         | Crossref | GoogleScholarGoogle Scholar |

[85]  I. Katsounaros, W. B. Schneider, J. C. Meier, U. Benedikt, P. U. Biedermann, A. A. Auer, K. J. J. Mayrhofer, Phys. Chem. Chem. Phys. 2012, 14, 7384.
         | Crossref | GoogleScholarGoogle Scholar |

[86]  R. J. Bowen, H. B. Urbach, J. H. Harrison, Nature 1967, 213, 592.
         | Crossref | GoogleScholarGoogle Scholar |

[87]  X. Jing, D. Cao, Y. Liu, G. Wang, J. Yin, Q. Wen, Y. Gao, J. Electroanal. Chem. 2011, 658, 46.
         | Crossref | GoogleScholarGoogle Scholar |

[88]  L. Shi, X. Niu, T. Liu, H. Zhao, M. Lan, Microchim. Acta 2015, 182, 2485.
         | Crossref | GoogleScholarGoogle Scholar |

[89]  Z. Yin, J. Wu, Z. Yang, Biosens. Bioelectron. 2011, 26, 1970.
         | Crossref | GoogleScholarGoogle Scholar |

[90]  C. Debiemme-Chouvy, Biosens. Bioelectron. 2010, 25, 2454.
         | Crossref | GoogleScholarGoogle Scholar |

[91]  G. Wang, Y. Bao, Y. Tian, J. Xia, D. Cao, J. Power Sources 2010, 195, 6463.
         | Crossref | GoogleScholarGoogle Scholar |

[92]  T. Poux, A. Bonnefont, A. Ryabova, G. Kerangueven, G. A. Tsirlina, E. R. Savinova, Phys. Chem. Chem. Phys. 2014, 16, 13595.
         | Crossref | GoogleScholarGoogle Scholar |

[93]  D. Cao, J. Chao, L. Sun, G. Wang, J. Power Sources 2008, 179, 87.
         | Crossref | GoogleScholarGoogle Scholar |

[94]  N. C. D. Nath, T. Debnath, E.-K. Kim, M. A. Ali Shaikh, J.-J. Lee, Electrochim. Acta 2018, 273, 474.
         | Crossref | GoogleScholarGoogle Scholar |

[95]  Z. Li, Y. He, X. Ke, L. Gan, J. Zhao, G. Cui, G. Wu, J. Power Sources 2015, 294, 136.
         | Crossref | GoogleScholarGoogle Scholar |

[96]  R. Araminaitė, R. Garjonytė, A. Malinauskas, J. Solid State Electrochem. 2010, 14, 149.
         | Crossref | GoogleScholarGoogle Scholar |

[97]  F. Yang, K. Cheng, X. Liu, S. Chang, J. Yin, C. Du, L. Du, G. Wang, D. Cao, J. Power Sources 2012, 217, 569.
         | Crossref | GoogleScholarGoogle Scholar |

[98]  X. Wang, K. Ye, H. Zhang, X. Ma, K. Zhu, K. Cheng, G. Wang, D. Cao, Int. J. Hydrogen Energy 2017, 42, 15044.
         | Crossref | GoogleScholarGoogle Scholar |

[99]  X. Xiao, F. Yang, K. Cheng, X. Wang, H. Zhang, K. Ye, G. Wang, D. Cao, Int. J. Hydrogen Energy 2017, 42, 22856.
         | Crossref | GoogleScholarGoogle Scholar |

[100]  S. Hasegawa, K. Shimotani, K. Kishi, H. Watanabe, Electrochem. Solid-State Lett. 2005, 8, A119.
         | Crossref | GoogleScholarGoogle Scholar |

[101]  A. E. Sanli, A. Aytaç, Int. J. Hydrogen Energy 2011, 36, 869.
         | Crossref | GoogleScholarGoogle Scholar |

[102]  S.-i. Yamazaki, Z. Siroma, H. Senoh, T. Ioroi, N. Fujiwara, K. Yasuda, J. Power Sources 2008, 178, 20.
         | Crossref | GoogleScholarGoogle Scholar |

[103]  Y. Yamada, Y. Fukunishi, S.-i. Yamazaki, S. Fukuzumi, Chem. Commun. 2010, 7334.
         | Crossref | GoogleScholarGoogle Scholar |

[104]  Y. Yamada, S. Yoshida, T. Honda, S. Fukuzumi, Energy Environ. Sci. 2011, 4, 2822.
         | Crossref | GoogleScholarGoogle Scholar |

[105]  Y. Yamada, M. Yoneda, S. Fukuzumi, Chem. – Eur. J. 2013, 19, 11733.
         | Crossref | GoogleScholarGoogle Scholar |

[106]  Y. Yamada, M. Yoneda, S. Fukuzumi, Inorg. Chem. 2014, 53, 1272.
         | Crossref | GoogleScholarGoogle Scholar |

[107]  S. A. Mousavi Shaegh, N.-T. Nguyen, S. M. Mousavi Ehteshami, S. H. Chan, Energy Environ. Sci. 2012, 5, 8225.
         | Crossref | GoogleScholarGoogle Scholar |