Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Pseudoproline Approach to Peptide Cyclization*

Katrina A. Jolliffe
+ Author Affiliations
- Author Affiliations

School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia. Email: kate.jolliffe@sydney.edu.au

Australian Journal of Chemistry 71(10) 723-730 https://doi.org/10.1071/CH18292
Submitted: 19 June 2018  Accepted: 5 July 2018   Published: 13 August 2018

Abstract

The development of efficient methods for the synthesis of cyclic peptides is of interest because of the many potential applications of this class of molecule. Pseudoprolines are derived from serine, threonine, and cysteine and can be used as traceless turn-inducers to facilitate the cyclization of a wide range of linear peptide precursors. The incorporation of a pseudoproline into the peptide to be cyclized generally results in a cyclization reaction that proceeds more quickly and with higher yield than that of an analogous sequence without the pseudoproline. Installation of a pseudoproline at the C-terminal position of a linear peptide sequence has also been shown to eliminate any epimerization of this residue during the reaction. Following pseudoproline-mediated cyclization, these turn-inducers can be removed on treatment with acid in a similar manner to other protecting groups to provide the native peptide sequence, and in the case of cysteine-derived pseudoprolines, the resulting cysteine can be readily converted into alanine through desulfurization. These traceless turn-inducers have been successfully used in the synthesis of cyclic peptides containing either serine, threonine, cysteine or alanine residues.


References

[1]  S. R. Adusumalli, A. K. Yudin, V. Rai, in Natural Lactones and Lactams: Synthesis, Occurrence and Biological Activity (Ed. T. Janecki) 2014, Ch. 8, pp. 321–369 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).

[2]  (a) D. P. Fairlie, J. D. A. Tyndall, R. C. Reid, A. K. Wong, G. Abbenante, M. J. Scanlon, D. R. March, D. A. Bergman, C. L. L. Chai, B. A. Burkett, J. Med. Chem. 2000, 43, 1271.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) D. Wang, W. Liao, P. S. Arora, Angew. Chem. Int. Ed. 2005, 44, 6525.
         | Crossref | GoogleScholarGoogle Scholar |

[3]     (a) P. Ermert, K. Moehle, D. Obrecht, in Macrocycles in Drug Discovery (Ed. J. Levin) 2015, Ch. 8, pp. 283–338 (Royal Society of Chemistry: London).
      (b) J. Mallinson, I. Collins, Future Med. Chem. 2012, 4, 1409.
         | Crossref | GoogleScholarGoogle Scholar |
         (c) R. M. J. Liskamp, D. T. S. Rijkers, S. A. Bakker, in Modern Supramolecular Chemistry: Strategies for Macrocycle Synthesis (Eds F. Diederich, P. J. Stang, R. R. Tykwinski) 2008, Ch. 1, pp. 1–27 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).

[4]  (a) T. A. Hill, N. E. Shepherd, F. Diness, D. P. Fairlie, Angew. Chem. Int. Ed. 2014, 53, 13020.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. K. Yudin, Chem. Sci. 2015, 6, 30.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. Leenheer, P. ten Dijke, C. J. Hipolito, Pept. Sci. 2016, 106, 889.
         | Crossref | GoogleScholarGoogle Scholar |
         (d) S. Zaretsky, A. K. Yudin, in Peptide-Based Drug Discovery: Challenges and New Therapeutics (Ed. V. Srivastava) 2017, Ch. 5, pp. 141–171 (The Royal Society of Chemistry: London).
      (e) A. Zorzi, K. Deyle, C. Heinis, Curr. Opin. Chem. Biol. 2017, 38, 24.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  F. Giordanetto, J. Kihlberg, J. Med. Chem. 2014, 57, 278.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) R. B. P. Elmes, K. A. Jolliffe, Chem. Commun. 2015, 4951.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) K. A. Jolliffe, Supramol. Chem. 2005, 17, 81.
         | Crossref | GoogleScholarGoogle Scholar |
         (c) S. Kubik, in Artificial Receptors for Chemical Sensors (Eds V. M. Mirsky, A. Yatsimirsky) 2010, Ch. 5, pp. 135–167 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).

[7]  (a) R. Chapman, K. A. Jolliffe, S. Perrier, Adv. Mater. 2013, 25, 1170.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. Chapman, M. Danial, M. L. Koh, K. A. Jolliffe, S. Perrier, Chem. Soc. Rev. 2012, 41, 6023.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Montenegro, M. R. Ghadiri, J. R. Granja, Acc. Chem. Res. 2013, 46, 2955.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) R. J. Brea, C. Reiriz, J. R. Granja, Chem. Soc. Rev. 2010, 39, 1448.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) J. N. Lambert, J. P. Mitchell, K. D. Roberts, J. Chem. Soc., Perkin Trans. 1 2001, 471.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) P. Li, P. P. Roller, J. Xu, Curr. Org. Chem. 2002, 6, 411.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. S. Davies, J. Pept. Sci. 2003, 9, 471.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Hamada, T. Shioiri, Chem. Rev. 2005, 105, 4441.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) N.-H. Tan, J. Zhou, Chem. Rev. 2006, 106, 840.
         | Crossref | GoogleScholarGoogle Scholar |
         (f) A. F. Spatola, P. Romanovskis, in The Amide Linkage: Structural Aspects in Chemistry, Biochemistry, and Materials Science (Eds A. Greenberg, C. M. Breneman, J. F. Liebman) 2003, Ch. 16, pp. 519–564 (John Wiley and Sons, Inc.: Hoboken, NJ).
      (g) S. Jiang, Z. Li, K. Ding, P. P. Roller, Curr. Org. Chem. 2008, 12, 1502.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) C. J. White, A. K. Yudin, Nat. Chem. 2011, 3, 509.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) L. M. De Leon Rodriguez, A. J. Weidkamp, M. A. Brimble, Org. Biomol. Chem. 2015, 13, 6906.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) Y. S. Ong, L. Gao, K. A. Kalesh, Z. Yu, J. Wang, C. Liu, Y. Li, H. Sun, S. S. Lee, Curr. Top. Med. Chem. 2017, 17, 2302.

[9]  F. Cavelier-Frontin, S. Achmad, J. Verducci, R. Jacquier, G. Pèpe, J. Mol. Struct. THEOCHEM 1993, 286, 125.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) For selected examples see: R. A. Turner, A. G. Oliver, S. R. Lokey, Org. Lett. 2007, 9, 5011.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) V. D. Bock, D. Speijer, H. Hiemstra, J. H. van Maarseveen, Org. Biomol. Chem. 2007, 5, 971.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. Hili, V. Rai, A. K. Yudin, J. Am. Chem. Soc. 2010, 132, 2889.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) B. H. Rotstein, V. Rai, R. Hili, A. K. Yudin, Nat. Protoc. 2010, 5, 1813.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) C. J. White, A. K. Yudin, Org. Lett. 2012, 14, 2898.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. M. Smith, J. R. Frost, R. Fasan, J. Org. Chem. 2013, 78, 3525.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) B. K. W. Chung, C. J. White, A. K. Yudin, Nat. Protoc. 2017, 12, 1277.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  S. Zaretsky, A. K. Yudin, Drug Discov. Today. Technol. 2017, 26, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  T. Fukuzumi, L. Ju, J. W. Bode, Org. Biomol. Chem. 2012, 10, 5837.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  F. Rohrbacher, G. Deniau, A. Luther, J. W. Bode, Chem. Sci. 2015, 6, 4889.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) O. David, W. J. N. Meester, H. Bieräugel, H. E. Schoemaker, H. Hiemstra, J. H. van Marrseveen, Angew. Chem. Int. Ed. 2003, 42, 4373.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. Kleineweischede, C. P. R. Hackenberger, Angew. Chem. Int. Ed. 2008, 47, 5984.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Sasaki, D. Crich, Org. Lett. 2010, 12, 3254.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  A. R. Puentes, M. C. Morejón, D. G. Rivera, L. A. Wessjohann, Org. Lett. 2017, 19, 4022.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) C. T. T. Wong, H. Y. Lam, T. Song, G. Chen, X. Li, Angew. Chem. Int. Ed. 2013, 52, 10212.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. P. A. Rutters, Y. Verdonk, R. de Vries, S. Ingemann, H. Hiemstra, V. Levacherb, J. H. van Maarseveen, Chem. Commun. 2012, 8084.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. A. Horton, G. T. Bourne, J. Coughlan, S. M. Kaiser, C. M. Jacobs, A. Jones, A. Ruhmann, J. Y. Tuner, M. L. Smythe, Org. Biomol. Chem. 2008, 6, 1386.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  M. El Haddadi, F. Cavelier, E. Vives, A. Azmani, J. Verducci, J. Martinez, J. Pept. Sci. 2000, 6, 560.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  W. D. F. Meutermans, G. T. Bourne, S. W. Golding, D. A. Horton, M. R. Campitelli, D. Craik, M. Scanlon, M. L. Smythe, Org. Lett. 2003, 5, 2711.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  D. N. Le, J. Riedel, N. Kozlyuk, R. W. Martin, V. M. Dong, Org. Lett. 2017, 19, 114.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  C. Sager, M. Mutter, P. Dumy, Tetrahedron Lett. 1999, 40, 7987.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  T. Ruckle, P. de Lavallaz, M. Keller, P. Dumy, M. Mutter, Tetrahedron 1999, 55, 11281.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  D. Skropeta, K. A. Jolliffe, P. Turner, J. Org. Chem. 2004, 69, 8804.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  N. Sayyadi, D. Taleski, S. Leesch, K. A. Jolliffe, Tetrahedron 2014, 70, 7700.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  K. A. Fairweather, N. Sayyadi, I. J. Luck, J. K. Clegg, K. A. Jolliffe, Org. Lett. 2010, 12, 3136.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  N. Sayyadi, D. Skropeta, K. A. Jolliffe, Org. Lett. 2005, 7, 5497.

[26]  K. A. Fairweather, N. Sayyadi, C. Roussakis, K. A. Jolliffe, Tetrahedron 2010, 66, 935.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  J. R. Cochrane, D. H. Yoon, C. S. P. McErlean, K. A. Jolliffe, Beilstein J. Org. Chem. 2012, 8, 1344.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  M. S. Y. Wong, K. A. Jolliffe, Aust. J. Chem. 2010, 63, 797.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  T. M. Postma, F. Albericio, Org. Lett. 2014, 16, 1772.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  M. S. Y. Wong, K. A. Jolliffe, Pept. Sci. 2018, 110, e24042.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  M. S. Y. Wong, D. Taleski, K. A. Jolliffe, Aust. J. Chem. 2015, 68, 627.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  (a) K. D. Kopple, J. Pharm. Sci. 1972, 61, 1345.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) K. Titlestad, Acta Chem. Scand. 1997, B31, 641.
      (c) A. Ehrlich, H.-U. Heyne, R. Winter, M. Beyermann, H. Haber, L. A. Carpino, M. Bienert, J. Org. Chem. 1996, 61, 8831.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  J. Illesinghe, C. X. Guo, R. Garland, A. Ahmed, B. van Lierop, J. Elaridi, W. R. Jackson, A. J. Robinson, Chem. Commun. 2009, 295.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  (a) T. Wöhr, F. Wahl, A. Hefzi, B. Rohwedder, T. Sato, X. Sun, M. Mutter, J. Am. Chem. Soc. 1996, 118, 9218.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) P. Dumy, M. Keller, D. E. Ryan, B. Rohwedder, T. Wöhr, M. Mutter, J. Am. Chem. Soc. 1997, 119, 918.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Keller, C. Sager, P. Dumy, M. Schutkowski, G. S. Fischer, M. Mutter, J. Am. Chem. Soc. 1998, 120, 2714.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  (a) M. Mutter, A. Nefzi, T. Sato, X. Sun, F. Wahl, T. Wöhr, Pept. Res. 1995, 8, 145.
      (b) W. R. Sampson, H. Patsiouras, N. J. Ede, J. Pept. Sci. 1999, 5, 403.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Mutter, Chimia 2013, 67, 868.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  (a) J. K. Clegg, J. R. Cochrane, N. Sayyadi, D. Skropeta, P. Turner, K. A. Jolliffe, Aust. J. Chem. 2009, 62, 711.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) B. Zhang, J. Gong, Y. Yang, S. Dong, J. Pept. Sci. 2011, 17, 601.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  H. Jamet, M. Jourdan, P. Dumy, J. Phys. Chem. B 2008, 112, 9975.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  P. Wipf, C. P. Miller, J. Am. Chem. Soc. 1992, 114, 10975.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  (a) L. Z. Yan, P. E. Dawson, J. Am. Chem. Soc. 2001, 123, 526.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Q. Wan, S. J. Danishefsky, Angew. Chem. Int. Ed. Engl. 2007, 46, 9248.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Jin, T. Li, H. Y. Chow, H. Liu, X. P. B. Li, Angew. Chem. Int. Ed. 2017, 56, 14607.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. S. Kulkarni, J. Sayers, B. Premdjee, R. J. Payne, Nat. Rev. Chem. 2018, 2, 0122.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  A. L. Doherty-Kirby, G. A. Lajoie, in Solid-Phase Peptide Synthesis: A Practical Guide (Eds S. A. Kates, F. Albericio) 2000, Ch. 4, pp. 129–196 (Marcel Dekker Inc.: New York, NY).

[41]  (a) For reviews see: C. T. C. Wong, C. L. Tung, X. Li, Mol. Biosyst. 2013, 9, 826.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. R. Malins, N. J. Mitchell, R. J. Payne, J. Pept. Sci. 2014, 20, 64.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Rohde, O. Seitz, Biopolymers 2010, 94, 551.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) P. E. Dawson, Isr. J. Chem. 2011, 51, 862.
         | Crossref | GoogleScholarGoogle Scholar |