Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Liquid Structures and Transport Properties of Lithium Bis(fluorosulfonyl)amide/Glyme Solvate Ionic Liquids for Lithium Batteries

Shoshi Terada A , Kohei Ikeda A , Kazuhide Ueno A , Kaoru Dokko https://orcid.org/0000-0002-9622-4345 A B C and Masayoshi Watanabe A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.

B Unit of Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8510, Japan.

C Corresponding author. Email: dokko-kaoru-js@ynu.ac.jp

Australian Journal of Chemistry 72(2) 70-80 https://doi.org/10.1071/CH18270
Submitted: 2 June 2018  Accepted: 9 August 2018   Published: 7 September 2018

Journal Compilation © CSIRO 2019 Open Access CC BY-NC-ND

Abstract

The liquid structures and transport properties of electrolytes composed of lithium bis(fluorosulfonyl)amide (Li[FSA]) and glyme (triglyme (G3) or tetraglyme (G4)) were investigated. Raman spectroscopy indicated that the 1 : 1 mixtures of Li[FSA] and glyme (G3 or G4) are solvate ionic liquids (SILs) comprising a cationic [Li(glyme)]+ complex and the [FSA] anion. In Li[FSA]-excess liquids with Li[FSA]/glyme molar ratios greater than 1, anionic Lix[FSA]y(y – x)– complexes were formed in addition to the cationic [Li(glyme)]+ complex. Pulsed field gradient NMR measurements revealed that the self-diffusion coefficients of Li+ (DLi) and glyme (Dglyme) are identical in the Li[FSA]/glyme = 1 liquid, suggesting that Li+ and glyme diffuse together and that a long-lived cationic [Li(glyme)]+ complex is formed in the SIL. The ratio of the self-diffusion coefficients of [FSA] and Li+, DFSA/DLi, was essentially constant at ~1.1–1.3 in the Li[FSA]/glyme < 1 liquid. However, DFSA/DLi increased rapidly as the amount of Li[FSA] increased in the Li[FSA]/glyme > 1 liquid, indicating that the ion transport mechanism in the electrolyte changed at the composition of Li[FSA]/glyme = 1. The oxidative stability of the electrolytes was enhanced as the Li[FSA] concentration increased. Furthermore, Al corrosion was suppressed in the electrolytes for which Li[FSA]/glyme > 1. A battery consisting of a Li metal anode, a LiNi1/3Mn1/3Co1/3O2 cathode, and Li[FSA]/G3 = 2 electrolyte exhibited a discharge capacity of 105 mA h g−1 at a current density of 1.3 mA cm−2, regardless of its low ionic conductivity of 0.2 mS cm−1.


References

[1]  T. M. Pappenfus, W. A. Henderson, B. B. Owens, K. R. Mann, W. H. Smyrl, J. Electrochem. Soc. 2004, 151, A209.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  T. Mandai, K. Yoshida, K. Ueno, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 2014, 16, 8761.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  D. Brouillette, D. E. Irish, N. J. Taylor, G. Perron, M. Odziemkowski, J. E. Desnoyers, Phys. Chem. Chem. Phys. 2002, 4, 6063.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  S. Tsuzuki, W. Shinoda, S. Seki, Y. Umebayashi, K. Yoshida, K. Dokko, M. Watanabe, ChemPhysChem 2013, 14, 1993.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  K. Ueno, R. Tatara, S. Tsuzuki, S. Saito, H. Doi, K. Yoshida, T. Mandai, M. Matsugami, Y. Umebayashi, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 2015, 17, 8248.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  K. Ueno, K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, J. Phys. Chem. B 2012, 116, 11323.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  M. Schmeisser, P. Illner, R. Puchta, A. Zahl, R. van Eldik, Chem. – Eur. J. 2012, 18, 10969.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, M. Watanabe, J. Am. Chem. Soc. 2011, 133, 13121.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  C. Zhang, A. Yamazaki, J. Murai, J.-W. Park, T. Mandai, K. Ueno, K. Dokko, M. Watanabe, J. Phys. Chem. C 2014, 118, 17362.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, J. Electrochem. Soc. 2012, 159, A1005.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, J. Phys. Chem. C 2011, 115, 18384.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  H. Moon, R. Tatara, T. Mandai, K. Ueno, K. Yoshida, N. Tachikawa, T. Yasuda, K. Dokko, M. Watanabe, J. Phys. Chem. C 2014, 118, 20246.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, MRS Online Proc. Libr. 2012, 1473,
         | Crossref | GoogleScholarGoogle Scholar |

[14]  S. Seki, K. Takei, H. Miyashiro, M. Watanabe, J. Electrochem. Soc. 2011, 158, A769.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  K. Hayamizu, Y. Aihara, S. Arai, C. G. Martinez, J. Phys. Chem. B 1999, 103, 519.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  W. S. Price, NMR Studies of Translational Motion: Principles and Applications 2009 (Cambridge University Press: Cambridge).

[17]  W. A. Henderson, N. R. Brooks, W. W. Brennessel, V. G. Young, Chem. Mater. 2003, 15, 4679.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  W. A. Henderson, N. R. Brooks, V. G. Young, Chem. Mater. 2003, 15, 4685.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  W. A. Henderson, F. McKenna, M. A. Khan, N. R. Brooks, V. G. Young, R. Frech, Chem. Mater. 2005, 17, 2284.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  W. A. Henderson, J. Phys. Chem. B 2006, 110, 13177.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  D. M. Seo, P. D. Boyle, R. D. Sommer, J. S. Daubert, O. Borodin, W. A. Henderson, J. Phys. Chem. B 2014, 118, 13601.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  X. Yang, Z. Su, D. Wu, S. L. Hsu, H. D. Stidham, Macromolecules 1997, 30, 3796.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  L. Ducasse, M. Dussauze, J. Grondin, J. C. Lassegues, C. Naudin, L. Servant, Phys. Chem. Chem. Phys. 2003, 5, 567.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  J. Grondin, J.-C. Lassegues, M. Chami, L. Servant, D. Talaga, W. A. Henderson, Phys. Chem. Chem. Phys. 2004, 6, 4260.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  R. Frech, W. Huang, Macromolecules 1995, 28, 1246.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  K. Fujii, H. Hamano, H. Doi, X. Song, S. Tsuzuki, K. Hayamizu, S. Seki, Y. Kameda, K. Dokko, M. Watanabe, Y. Umebayashi, J. Phys. Chem. C 2013, 117, 19314.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  H. Yoon, A. S. Best, M. Forsyth, D. R. MacFarlane, P. C. Howlett, Phys. Chem. Chem. Phys. 2015, 17, 4656.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  C. Zhang, K. Ueno, A. Yamazaki, K. Yoshida, H. Moon, T. Mandai, Y. Umebayashi, K. Dokko, M. Watanabe, J. Phys. Chem. B 2014, 118, 5144.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, J. Am. Chem. Soc. 2014, 136, 5039.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  K. Sodeyama, Y. Yamada, K. Aikawa, A. Yamada, Y. Tateyama, J. Phys. Chem. C 2014, 118, 14091.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. Yamada, Nat. Energy 2018, 3, 22.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  J. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.-G. Zhang, Nat. Commun. 2015, 6, 6362.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  D. Aurbach, J. Power Sources 2000, 89, 206.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn 2000 (John Wiley & Sons: New York, NY).

[35]  D. W. McOwen, D. M. Seo, O. Borodin, J. Vatamanu, P. D. Boyle, W. A. Henderson, Energy Environ. Sci. 2014, 7, 416.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  Y. Yamada, C. H. Chiang, K. Sodeyama, J. Wang, Y. Tateyama, A. Yamada, ChemElectroChem 2015, 2, 1687.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  S. Theivaprakasam, G. Girard, P. Howlett, M. Forsyth, S. Mitra, D. MacFarlane, NPJ Materials Degradation 2018, 2, 13.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  X. Wang, E. Yasukawa, S. Mori, Electrochim. Acta 2000, 45, 2677.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  L. J. Krause, W. Lamanna, J. Summerfield, M. Engle, G. Korba, R. Loch, R. Atanasoski, J. Power Sources 1997, 68, 320.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  R. Jung, M. Metzger, F. Maglia, C. Stinner, H. A. Gasteiger, J. Phys. Chem. Lett. 2017, 8, 4820.
         | Crossref | GoogleScholarGoogle Scholar |