Liquid Structures and Transport Properties of Lithium Bis(fluorosulfonyl)amide/Glyme Solvate Ionic Liquids for Lithium Batteries
Shoshi Terada A , Kohei Ikeda A , Kazuhide Ueno A , Kaoru Dokko A B C and Masayoshi Watanabe AA Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
B Unit of Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8510, Japan.
C Corresponding author. Email: dokko-kaoru-js@ynu.ac.jp
Australian Journal of Chemistry 72(2) 70-80 https://doi.org/10.1071/CH18270
Submitted: 2 June 2018 Accepted: 9 August 2018 Published: 7 September 2018
Journal Compilation © CSIRO 2019 Open Access CC BY-NC-ND
Abstract
The liquid structures and transport properties of electrolytes composed of lithium bis(fluorosulfonyl)amide (Li[FSA]) and glyme (triglyme (G3) or tetraglyme (G4)) were investigated. Raman spectroscopy indicated that the 1 : 1 mixtures of Li[FSA] and glyme (G3 or G4) are solvate ionic liquids (SILs) comprising a cationic [Li(glyme)]+ complex and the [FSA]− anion. In Li[FSA]-excess liquids with Li[FSA]/glyme molar ratios greater than 1, anionic Lix[FSA]y(y – x)– complexes were formed in addition to the cationic [Li(glyme)]+ complex. Pulsed field gradient NMR measurements revealed that the self-diffusion coefficients of Li+ (DLi) and glyme (Dglyme) are identical in the Li[FSA]/glyme = 1 liquid, suggesting that Li+ and glyme diffuse together and that a long-lived cationic [Li(glyme)]+ complex is formed in the SIL. The ratio of the self-diffusion coefficients of [FSA]− and Li+, DFSA/DLi, was essentially constant at ~1.1–1.3 in the Li[FSA]/glyme < 1 liquid. However, DFSA/DLi increased rapidly as the amount of Li[FSA] increased in the Li[FSA]/glyme > 1 liquid, indicating that the ion transport mechanism in the electrolyte changed at the composition of Li[FSA]/glyme = 1. The oxidative stability of the electrolytes was enhanced as the Li[FSA] concentration increased. Furthermore, Al corrosion was suppressed in the electrolytes for which Li[FSA]/glyme > 1. A battery consisting of a Li metal anode, a LiNi1/3Mn1/3Co1/3O2 cathode, and Li[FSA]/G3 = 2 electrolyte exhibited a discharge capacity of 105 mA h g−1 at a current density of 1.3 mA cm−2, regardless of its low ionic conductivity of 0.2 mS cm−1.
References
[1] T. M. Pappenfus, W. A. Henderson, B. B. Owens, K. R. Mann, W. H. Smyrl, J. Electrochem. Soc. 2004, 151, A209.| Crossref | GoogleScholarGoogle Scholar |
[2] T. Mandai, K. Yoshida, K. Ueno, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 2014, 16, 8761.
| Crossref | GoogleScholarGoogle Scholar |
[3] D. Brouillette, D. E. Irish, N. J. Taylor, G. Perron, M. Odziemkowski, J. E. Desnoyers, Phys. Chem. Chem. Phys. 2002, 4, 6063.
| Crossref | GoogleScholarGoogle Scholar |
[4] S. Tsuzuki, W. Shinoda, S. Seki, Y. Umebayashi, K. Yoshida, K. Dokko, M. Watanabe, ChemPhysChem 2013, 14, 1993.
| Crossref | GoogleScholarGoogle Scholar |
[5] K. Ueno, R. Tatara, S. Tsuzuki, S. Saito, H. Doi, K. Yoshida, T. Mandai, M. Matsugami, Y. Umebayashi, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 2015, 17, 8248.
| Crossref | GoogleScholarGoogle Scholar |
[6] K. Ueno, K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, J. Phys. Chem. B 2012, 116, 11323.
| Crossref | GoogleScholarGoogle Scholar |
[7] M. Schmeisser, P. Illner, R. Puchta, A. Zahl, R. van Eldik, Chem. – Eur. J. 2012, 18, 10969.
| Crossref | GoogleScholarGoogle Scholar |
[8] K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, M. Watanabe, J. Am. Chem. Soc. 2011, 133, 13121.
| Crossref | GoogleScholarGoogle Scholar |
[9] C. Zhang, A. Yamazaki, J. Murai, J.-W. Park, T. Mandai, K. Ueno, K. Dokko, M. Watanabe, J. Phys. Chem. C 2014, 118, 17362.
| Crossref | GoogleScholarGoogle Scholar |
[10] K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, J. Electrochem. Soc. 2012, 159, A1005.
| Crossref | GoogleScholarGoogle Scholar |
[11] K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, J. Phys. Chem. C 2011, 115, 18384.
| Crossref | GoogleScholarGoogle Scholar |
[12] H. Moon, R. Tatara, T. Mandai, K. Ueno, K. Yoshida, N. Tachikawa, T. Yasuda, K. Dokko, M. Watanabe, J. Phys. Chem. C 2014, 118, 20246.
| Crossref | GoogleScholarGoogle Scholar |
[13] K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, MRS Online Proc. Libr. 2012, 1473,
| Crossref | GoogleScholarGoogle Scholar |
[14] S. Seki, K. Takei, H. Miyashiro, M. Watanabe, J. Electrochem. Soc. 2011, 158, A769.
| Crossref | GoogleScholarGoogle Scholar |
[15] K. Hayamizu, Y. Aihara, S. Arai, C. G. Martinez, J. Phys. Chem. B 1999, 103, 519.
| Crossref | GoogleScholarGoogle Scholar |
[16] W. S. Price, NMR Studies of Translational Motion: Principles and Applications 2009 (Cambridge University Press: Cambridge).
[17] W. A. Henderson, N. R. Brooks, W. W. Brennessel, V. G. Young, Chem. Mater. 2003, 15, 4679.
| Crossref | GoogleScholarGoogle Scholar |
[18] W. A. Henderson, N. R. Brooks, V. G. Young, Chem. Mater. 2003, 15, 4685.
| Crossref | GoogleScholarGoogle Scholar |
[19] W. A. Henderson, F. McKenna, M. A. Khan, N. R. Brooks, V. G. Young, R. Frech, Chem. Mater. 2005, 17, 2284.
| Crossref | GoogleScholarGoogle Scholar |
[20] W. A. Henderson, J. Phys. Chem. B 2006, 110, 13177.
| Crossref | GoogleScholarGoogle Scholar |
[21] D. M. Seo, P. D. Boyle, R. D. Sommer, J. S. Daubert, O. Borodin, W. A. Henderson, J. Phys. Chem. B 2014, 118, 13601.
| Crossref | GoogleScholarGoogle Scholar |
[22] X. Yang, Z. Su, D. Wu, S. L. Hsu, H. D. Stidham, Macromolecules 1997, 30, 3796.
| Crossref | GoogleScholarGoogle Scholar |
[23] L. Ducasse, M. Dussauze, J. Grondin, J. C. Lassegues, C. Naudin, L. Servant, Phys. Chem. Chem. Phys. 2003, 5, 567.
| Crossref | GoogleScholarGoogle Scholar |
[24] J. Grondin, J.-C. Lassegues, M. Chami, L. Servant, D. Talaga, W. A. Henderson, Phys. Chem. Chem. Phys. 2004, 6, 4260.
| Crossref | GoogleScholarGoogle Scholar |
[25] R. Frech, W. Huang, Macromolecules 1995, 28, 1246.
| Crossref | GoogleScholarGoogle Scholar |
[26] K. Fujii, H. Hamano, H. Doi, X. Song, S. Tsuzuki, K. Hayamizu, S. Seki, Y. Kameda, K. Dokko, M. Watanabe, Y. Umebayashi, J. Phys. Chem. C 2013, 117, 19314.
| Crossref | GoogleScholarGoogle Scholar |
[27] H. Yoon, A. S. Best, M. Forsyth, D. R. MacFarlane, P. C. Howlett, Phys. Chem. Chem. Phys. 2015, 17, 4656.
| Crossref | GoogleScholarGoogle Scholar |
[28] C. Zhang, K. Ueno, A. Yamazaki, K. Yoshida, H. Moon, T. Mandai, Y. Umebayashi, K. Dokko, M. Watanabe, J. Phys. Chem. B 2014, 118, 5144.
| Crossref | GoogleScholarGoogle Scholar |
[29] Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, J. Am. Chem. Soc. 2014, 136, 5039.
| Crossref | GoogleScholarGoogle Scholar |
[30] K. Sodeyama, Y. Yamada, K. Aikawa, A. Yamada, Y. Tateyama, J. Phys. Chem. C 2014, 118, 14091.
| Crossref | GoogleScholarGoogle Scholar |
[31] J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. Yamada, Nat. Energy 2018, 3, 22.
| Crossref | GoogleScholarGoogle Scholar |
[32] J. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.-G. Zhang, Nat. Commun. 2015, 6, 6362.
| Crossref | GoogleScholarGoogle Scholar |
[33] D. Aurbach, J. Power Sources 2000, 89, 206.
| Crossref | GoogleScholarGoogle Scholar |
[34] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn 2000 (John Wiley & Sons: New York, NY).
[35] D. W. McOwen, D. M. Seo, O. Borodin, J. Vatamanu, P. D. Boyle, W. A. Henderson, Energy Environ. Sci. 2014, 7, 416.
| Crossref | GoogleScholarGoogle Scholar |
[36] Y. Yamada, C. H. Chiang, K. Sodeyama, J. Wang, Y. Tateyama, A. Yamada, ChemElectroChem 2015, 2, 1687.
| Crossref | GoogleScholarGoogle Scholar |
[37] S. Theivaprakasam, G. Girard, P. Howlett, M. Forsyth, S. Mitra, D. MacFarlane, NPJ Materials Degradation 2018, 2, 13.
| Crossref | GoogleScholarGoogle Scholar |
[38] X. Wang, E. Yasukawa, S. Mori, Electrochim. Acta 2000, 45, 2677.
| Crossref | GoogleScholarGoogle Scholar |
[39] L. J. Krause, W. Lamanna, J. Summerfield, M. Engle, G. Korba, R. Loch, R. Atanasoski, J. Power Sources 1997, 68, 320.
| Crossref | GoogleScholarGoogle Scholar |
[40] R. Jung, M. Metzger, F. Maglia, C. Stinner, H. A. Gasteiger, J. Phys. Chem. Lett. 2017, 8, 4820.
| Crossref | GoogleScholarGoogle Scholar |