Microfluidic Radiosynthesis of the Muscarinic M2 Imaging Agent [18F]FP-TZTP*
Lidia Matesic A D , Ivan Greguric A B and Giancarlo Pascali A CA Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
B Australian Centre of Nanomedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
C Brain and Mind Centre, The University of Sydney, Mallett Street, Camperdown, NSW 2050, Australia.
D Corresponding author. Email: lidia.matesic@ansto.gov.au
Australian Journal of Chemistry 71(10) 811-817 https://doi.org/10.1071/CH18266
Submitted: 1 June 2018 Accepted: 1 August 2018 Published: 31 August 2018
Abstract
3-(4-(3-[18F]Fluoropropylthio)-1,2,5-thiadiazol-3-yl)-1-methyl-1,2,5,6-tetrahydropyridine ([18F]FP-TZTP) is a selective 18F-radiotracer for the muscarinic acetylcholine receptor subtype M2, which can be used to perform positron emission tomography (PET) scans on patients with neurological disorders such as Alzheimer’s disease. [18F]FP-TZTP was produced using continuous-flow microfluidics, a technique that uses reduced amounts of chemical reagents, shorter reaction times and in general, results in higher radiochemical yields compared to currently used techniques. The optimal 18F-radiolabelling conditions consisted of a total flow rate of 40 µL min−1 and 190°C, which produced [18F]FP-TZTP in 26 ± 10 % radiochemical yield with a molar activity of 182 ± 65 GBq µmol−1 and >99 % radiochemical purity.
References
[1] Y. Biran, C. L. Masters, K. J. Barnham, A. I. Bush, P. A. Adlard, J. Cell. Mol. Med. 2009, 13, 61.| Crossref | GoogleScholarGoogle Scholar |
[2] A. V. Mossine, A. F. Brooks, B. D. Henderson, B. G. Hockley, K. A. Frey, P. J. H. Scott, EJNMMI Radiopharmacy and Chemistry 2017, 2, 7.
| Crossref | GoogleScholarGoogle Scholar |
[3] R. Rodríguez‐Puertas, J. Pascual, T. Vilaró, Á. Pazos, Synapse 1997, 26, 341.
| Crossref | GoogleScholarGoogle Scholar |
[4] P. Sauerberg, P. H. Olesen, S. Nielsen, S. Treppendahl, M. J. Sheardown, T. Honore, C. H. Mitch, J. S. Ward, A. J. Pike, J. Med. Chem. 1992, 35, 2274.
| Crossref | GoogleScholarGoogle Scholar |
[5] D. O. Kiesewetter, J. Lee, L. Lang, S. G. Park, C. H. Paik, W. C. Eckelman, J. Med. Chem. 1995, 38, 5.
| Crossref | GoogleScholarGoogle Scholar |
[6] R. E. Carson, D. O. Kiesewetter, E. Jagoda, M. G. Der, P. Herscovitch, W. C. Eckelman, J. Cereb. Blood Flow Metab. 1998, 18, 1130.
| Crossref | GoogleScholarGoogle Scholar |
[7] E. M. Jagoda, D. O. Kiesewetter, K. Shimoji, L. Ravasi, M. Yamada, J. Gomeza, J. Wess, W. C. Eckelman, Neuropharmacology 2003, 44, 653.
| Crossref | GoogleScholarGoogle Scholar |
[8] D. O. Kiesewetter, B. K. Vuong, M. A. Channing, Nucl. Med. Biol. 2003, 30, 73.
| Crossref | GoogleScholarGoogle Scholar |
[9] E. M. van Oosten, A. A. Wilson, K. A. Stephenson, D. C. Mamo, B. G. Pollock, B. H. Mulsant, A. K. Yudin, S. Houle, N. Vasdev, Appl. Radiat. Isot. 2009, 67, 611.
| Crossref | GoogleScholarGoogle Scholar |
[10] M.-W. Wang, W.-Y. Lin, K. Liu, M. Masterman-Smith, C. K.-F. Shen, Mol. Imaging 2010, 9, 175.
| Crossref | GoogleScholarGoogle Scholar |
[11] G. Pascali, P. Watts, P. A. Salvadori, Nucl. Med. Biol. 2013, 40, 776.
| Crossref | GoogleScholarGoogle Scholar |
[12] S. H. Liang, D. L. Yokell, M. D. Normandin, P. A. Rice, R. N. Jackson, T. M. Shoup, T. J. Brady, G. E. Fakhri, T. L. Collier, N. Vasdev, Mol. Imaging 2014, 13, 1.
| Crossref | GoogleScholarGoogle Scholar |
[13] H. Kimura, K. Tomatsu, H. Saiki, K. Arimitsu, M. Ono, H. Kawashima, R. Iwata, H. Nakanishi, E. Ozeki, Y. Kuge, H. Saji, PLoS One 2016, 11,
| Crossref | GoogleScholarGoogle Scholar |
[14] S. Pfaff, C. Philippe, V. Pichler, M. Hacker, M. Mitterhauser, W. Wadsak, Dalton Trans. 2018, 5997.
| Crossref | GoogleScholarGoogle Scholar |
[15] G. Pascali, A. Berton, M. DeSimone, N. Wyatt, L. Matesic, I. Greguric, P. A. Salvadori, Appl. Radiat. Isot. 2014, 84, 40.
| Crossref | GoogleScholarGoogle Scholar |
[16] L. Matesic, A. Kallinen, N. A. Wyatt, T. Q. Pham, I. Greguric, G. Pascali, Aust. J. Chem. 2015, 68, 69.
| Crossref | GoogleScholarGoogle Scholar |
[17] L. Matesic, A. Kallinen, I. Greguric, G. Pascali, Nucl. Med. Biol. 2017, 52, 24.
| Crossref | GoogleScholarGoogle Scholar |
[18] G. Pascali, L. Matesic, T. L. Collier, N. Wyatt, B. H. Fraser, T. Q. Pham, P. A. Salvadori, I. Greguric, Nat. Protoc. 2014, 9, 2017.
| Crossref | GoogleScholarGoogle Scholar |
[19] G. Pascali, M. Simone, L. Matesic, I. Greguric, P. Salvadori, J. Flow Chem. 2014, 4, 86.
| Crossref | GoogleScholarGoogle Scholar |
[20] J.-H. Chun, S. Telu, S. Lu, V. W. Pike, Org. Biomol. Chem. 2013, 11, 5094.
| Crossref | GoogleScholarGoogle Scholar |
[21] L. Matesic, N. A. Wyatt, B. H. Fraser, M. P. Roberts, T. Q. Pham, I. Greguric, J. Org. Chem. 2013, 78, 11262.
| Crossref | GoogleScholarGoogle Scholar |
[22] M. A. Klenner, G. Pascali, B. Zhang, T. R. Sia, L. K. Spare, A. M. Krause‐Heuer, J. R. Aldrich‐Wright, I. Greguric, A. J. Guastella, M. Massi, B. H. Fraser, Chem. – Eur. J. 2017, 23, 6499.
| Crossref | GoogleScholarGoogle Scholar |
[23] D. Ory, J. Van den Brande, T. de Groot, K. Serdons, M. Bex, L. Declercq, F. Cleeren, M. Ooms, K. Van Laere, A. Verbruggen, G. Bormans, J. Pharm. Biomed. Anal. 2015, 111, 209.
| Crossref | GoogleScholarGoogle Scholar |
[24] T. Collier, M. Akula, S. Liang, J. Nucl. Med. 2014, 55, 1245.