Photo-Luminescence Dynamics of Ionic Liquids Composed of the Dicyanoaurate(i) Anion
Yoshifumi Kimura A B C , Takamitsu Narita A , Saki Tanaka B , Mitsuhiro Taniguchi B , Kaori Fujii A , Takatsugu Endo B , Yoshiro Yasaka B and Masakatsu Ueno BA Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan.
B Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan.
C Corresponding author. Email: yokimura@mail.doshisha.ac.jp
Australian Journal of Chemistry 72(2) 42-48 https://doi.org/10.1071/CH18187
Submitted: 27 April 2018 Accepted: 06 June 2018 Published: 10 July 2018
Abstract
Time-resolved luminescent spectra of ionic liquids of 1-butyl-3-methylimidazolium dicyanoaurate ([C4mim][Au(CN)2]) and N-butyl-N-methylpyrrolidinium dicyanoaurate ([P14][Au(CN)2]) at different excitation wavelengths (310 and 340 nm) were measured using a streak camera. Immediately after photoexcitation, an intense luminescence band appeared at ~380 nm that rapidly decayed with a time constant of 31 ps for [C4mim][Au(CN)2] and 71 ps for [P14][Au(CN)2]. With the decay of this band, another luminescent band appeared at ~460 nm that slowly decayed (88 ns for [C4mim][Au(CN)2] and 1.2 μs for [P14][Au(CN)2]). The peak position of this second band shifted to a longer wavelength over time for both ionic liquids. The time profile of the peak showed a multi-exponential decay and depended on the excitation wavelength and the cation species. The peak shift is discussed in terms of the aggregation of anions. The excitation wavelength dependence was supposed to reflect the distribution of the larger oligomer in the ground state and the structural heterogeneity of the ionic liquids. The difference as a result of the cation is discussed in relation to the viscosity and the structure of the ionic liquids.
References
[1] (a) Y. Yoshida, J. Fujii, G. Saito, T. Hiramatsu, N. Sato, J. Mater. Chem. 2006, 16, 724.| Crossref | GoogleScholarGoogle Scholar |
(b) S. Pitula, A.-V. Mudring, Chem. – Eur. J. 2010, 16, 3355.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Tokarev, J. Larionova, Y. Guari, C. Guerin, J. M. Lopez-de-Luzuriaga, M. Monge, P. Dieudonne, C. Blanc, Dalton Trans. 2010, 39, 10574.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Yoshida, G. Saito, Phys. Chem. Chem. Phys. 2010, 12, 1675.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Gago, L. Cabrita, J. C. Lima, L. C. Branco, F. Pina, Dalton Trans. 2013, 42, 6213.
| Crossref | GoogleScholarGoogle Scholar |
(f) E. T. Spielberg, E. Edengeiser, B. Mallick, M. Havenith, A.-V. Mudring, Chem. – Eur. J. 2014, 20, 5338.
| Crossref | GoogleScholarGoogle Scholar |
(g) T. Ogawa, M. Yoshida, H. Ohara, A. Kobayashi, M. Kato, Chem. Commun. 2015, 51, 13377.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) J. T. Markert, N. Blom, G. Roper, A. D. Perregaux, N. Nagasundaram, M. R. Corson, A. Ludi, J. K. Nagle, H. H. Patterson, Chem. Phys. Lett. 1985, 118, 258.
| Crossref | GoogleScholarGoogle Scholar |
(b) N. Nagasundaram, G. Roper, J. Biscoe, J. W. Chai, H. H. Patterson, N. Blom, A. Ludi, Inorg. Chem. 1986, 25, 2947.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. H. Patterson, S. M. Kanan, M. A. Omary, Coord. Chem. Rev. 2000, 208, 227.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. A. Rawashdeh-Omary, M. A. Omary, H. H. Patterson, J. Am. Chem. Soc. 2000, 122, 10371.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. A. Rawashdeh-Omary, M. A. Omary, H. H. Patterson, J. P. Fackler, J. Am. Chem. Soc. 2001, 123, 11237.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. R. Hettiarachchi, M. A. Rawashdeh-Omary, S. M. Kanan, M. A. Omary, H. H. Patterson, C. P. Tripp, J. Phys. Chem. B 2002, 106, 10058.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. Iwamura, K. Nozaki, S. Takeuchi, T. Tahara, J. Am. Chem. Soc. 2013, 135, 538.
| Crossref | GoogleScholarGoogle Scholar |
(h) R. Wakabayashi, J. Maeba, K. Nozaki, M. Iwamura, Inorg. Chem. 2016, 55, 7739.
| Crossref | GoogleScholarGoogle Scholar |
(i) M. Iwamura, R. Wakabayash, J. Maeba, K. Nozaki, S. Takeuchi, T. Tahara, Phys. Chem. Chem. Phys. 2016, 18, 5103.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) Y. Kimura, M. Fukuda, K. Suda, M. Terazima, J. Phys. Chem. B 2010, 114, 11847.
| Crossref | GoogleScholarGoogle Scholar |
(b) K. Suda, M. Terazima, H. Sato, Y. Kimura, J. Phys. Chem. B 2013, 117, 12567.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) P. K. Mandal, M. Sarkar, A. Samanta, J. Phys. Chem. A 2004, 108, 9048.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Samanta, J. Phys. Chem. B 2006, 110, 13704.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Jin, X. Li, M. Maroncelli, J. Phys. Chem. B 2007, 111, 13473.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Samanta, J. Phys. Chem. Lett. 2010, 1, 1557.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. Kimura, K. Suda, M. Shibuya, Y. Yasaka, M. Ueno, Bull. Chem. Soc. Jpn. 2015, 88, 939.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) D. C. Khara, J. P. Kumar, N. Mondal, A. Samanta, J. Phys. Chem. B 2013, 117, 5156.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Guo, K. S. Han, S. M. Mahurin, G. A. Baker, P. C. Hillesheim, S. Dai, E. W. Hagaman, R. W. Shaw, J. Phys. Chem. B 2012, 116, 7883.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. S. Mali, G. B. Dutt, T. Mukherjee, J. Chem. Phys. 2008, 128, 054504.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Yasaka, Y. Kimura, J. Phys. Chem. B 2015, 119, 15493.
| Crossref | GoogleScholarGoogle Scholar |
[6] A. R. Neale, C. Schütter, P. Wilde, P. Goodrich, C. Hardacre, S. Passerini, A. Balducci, J. Jacquemin, J. Chem. Eng. Data 2017, 62, 376.
| Crossref | GoogleScholarGoogle Scholar |