Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Facile Surfactant-Free Synthesis of Composition-Tunable Bimetallic PtCu Alloy Nanosponges for Direct Methanol Fuel Cell Applications

Yanna Hu A , Taiyang Liu A , Chaozhong Li A B and Qiang Yuan orcid.org/0000-0003-3022-9925 A B C
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China.

B Department of Chemistry, Tsinghua University, Beijing 100084, China.

C Corresponding author. Email: qyuan@gzu.edu.cn

Australian Journal of Chemistry 71(7) 504-510 https://doi.org/10.1071/CH18160
Submitted: 11 April 2018  Accepted: 31 May 2018   Published: 27 June 2018

Abstract

Sponge-like metal nanomaterials have been paid great attention due to their unique structure for wide applications in hydrogen storage, filtration, sensors, heterogeneous catalysis, and fuel cells. Here, we first use a facile, bottom-up method to successfully prepare composition-tunable PtCu alloy nanosponges constructed with sub-4.5 nm particle building blocks. Due to the porous structure, structure defects, and synergetic effect of Pt and Cu, the PtCu alloy nanosponges exhibit good electrocatalytic performances towards methanol oxidation. Compared with pure Pt nanosponges, the specific/mass activity on PtCu2 alloy nanosponges is 5.84/2.93 times that on pure Pt nanosponges. Furthermore, the stability and reactivation ability of PtCu alloy nanosponges are also superior to pure Pt nanosponges.


References

[1]  D. Walsh, L. Arcelli, T. Ikoma, J. Tanaka, S. Mann, Nat. Mater. 2003, 2, 386.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  B. C. Tappan, S. A. Steiner, E. P. Luther, Angew. Chem. Int. Ed. 2010, 49, 4544.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  Y. X. Zhang, H. C. Zeng, J. Phys. Chem. C 2007, 111, 6970.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  M. Xiao, L. Feng, J. Zhu, P. L. Chang, W. Wei, Nanoscale 2015, 7, 9467.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  S. Tominaka, T. Hayashi, Y. Nakamura, T. Osaka, J. Mater. Chem. 2010, 20, 7175.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  Y. C. Shi, T. Yuan, J. J. Feng, J. H. Yuan, A. J. Wang, J. Colloid Interface Sci. 2017, 505, 14.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  V. Bérubé, G. Radtke, M. Dresselhaus, G. Chen, Int. J. Energy Res. 2007, 31, 637.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  M. Nishizawa, V. P. Menon, C. R. Martin, Science 1995, 268, 700.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, D. L. Allara, Langmuir 2007, 23, 2414.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  J. Liu, L. Cao, W. Huang, Z. L. Li, ACS Appl. Mater. Interfaces 2011, 3, 3552.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  C. X. Xu, R. Y. Wang, M. W. Chen, Y. Hang, Y. Ding, Phys. Chem. Chem. Phys. 2010, 12, 239.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  D. H. Wang, H. M. Luo, R. Kou, P. G. Maria, S. G. Xiao, O. G. Vladimir, Z. Z. Yang, C. J. Brinker, Y. F. Lu, Angew. Chem. Int. Ed. 2004, 43, 6169.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  R. H. Jin, J. J. Yuan, J. Mater. Chem. 2005, 15, 4513.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Z. H. Zhang, Y. Wang, Z. Qi, W. H. Zhang, J. Y. Qin, J. Frenzel, J. Phys. Chem. C 2009, 113, 12629.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  H. F. Zhang, A. I. Cooper, Soft Mater. 2005, 1, 107.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  J. Erlebacher, J. A. Michael, A. Karma, N. Dimitrov, K. Sieradzki, Nature 2001, 410, 450.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  C. X. Xu, Y. Q. Liu, J. P. Wang, H. R. Geng, H. J. Qiu, ACS Appl. Mater. Interfaces 2011, 3, 4626.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  D. H. Wang, H. P. Jakobson, R. Kou, J. Tang, R. Z. Fineman, D. H. Yu, Y. F. Lu, Chem. Mater. 2006, 18, 4231.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  S. J. Guo, S. J. Dong, E. Wang, Chem. Commun. 2010, 46, 1869.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  D. B. Huang, Q. Yuan, P. L. He, K. Wang, X. Wang, Nanoscale 2016, 8, 14705.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  B. Jiang, C. L. Li, O. Dag, H. Abe, T. Takei, I. Tsubasa, A. Shahriar, M. Hossain, I. Tofazzal, W. Kathleen, J. Henzie, Y. Yamauchi, Nat. Commun. 2017, 8, 15581.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  X. Huang, E. Zhu, Y. Chen, Y. Li, C.‐Y. Chiu, Y. Xu, Z. Lin, X. Duan, Y. Huang, Adv. Mater. 2013, 25, 2974.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  A. Mahmood, N. Xie, M. A. U. Din, F. Saleem, H. Lin, X. Wang, Chem. Sci. 2017, 8, 4292.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  W. Y. Zhao, B. Ni, Q. Yuan, P. L. He, Y. Gong, L. Gu, X. Wang, Adv. Energy Mater. 2017, 7, 1601593.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  H. Fan, C. Ming, Z. Wang, R. Wang, Nano Res. 2017, 10, 187.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  H. H. Li, Q. Q. Fu, L. Xu, S. Y. Ma, Y. R. Zheng, X. J. Liu, S. H. Yu, Energy Environ. Sci. 2017, 10, 1751.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  S. H. Ye, X. J. He, L. X. Ding, Z. W. Pan, Y. X. Tong, M. M. Wu, G. R. Li, Chem. Commun. 2014, 50, 12337.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  I. A. Khan, Y. H. Qian, A. Badshah, D. Zhao, M. A. Nadeem, ACS Appl. Mater. Interfaces 2016, 8, 20793.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  J. Maya-Cornejo, R. Carrera-Cerritos, D. Sebastian, J. Ledesma-Garcia, L. G. Arriaga, A. S. Arico, V. Baglio, Int. J. Hydrogen Energy 2017, 42, 27919.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  X. L. Peng, D. H. Chen, X. L. Yang, D. S. Wang, M. L. Li, C. C. Tseng, R. Panneerselvam, X. Wang, W. J. Hu, J. N. Tian, Y. C. Zhao, ACS Appl. Mater. Interfaces 2016, 8, 33673.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  L. Xiong, A. Manthiram, J. Electrochem. Soc. 2005, 152, A697.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  V. Baglio, A. Stassi, A. DiBlasi, V. Antonucei, Electrochim. Acta 2007, 53, 1360.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  D. H. Chen, Y. C. Zhao, X. L. Peng, X. Wang, W. J. Hu, C. Jing, S. S. Tian, J. N. Tian, Electrochim. Acta 2015, 177, 86.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  J. Y. Cao, Y. Y. Du, M. M. Dong, Z. D. Chen, J. Xu, J. Alloys Compd. 2018, 747, 124.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  F. Saleem, Z. Zhang, B. Xu, X. Xu, P. He, X. Wang, J. Am. Chem. Soc. 2013, 135, 18304.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  O. Sorsa, H. Romar, U. Lassi, T. Kallio, Electrochim. Acta 2017, 230, 49.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  S. F. Fu, C. Z. Zhu, Q. R. Shi, H. B. Xia, D. Du, Y. H. Lin, Nanoscale 2016, 8, 5076.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  J. Rossmeisl, P. Ferrin, G. A. Tritsaris, A. U. Nilekar, S. Koh, S. E. Bae, S. R. Brankovic, P. Strassere, M. Mavrikakis, Energy Environ. Sci. 2012, 5, 8335.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  C. Li, T. Liu, T. He, B. Ni, Q. Yuan, X. Wang, Nanoscale 2018, 10, 4670.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  Y. Liao, G. Yu, Y. Zhang, T. Guo, F. Chang, C. J. Zhong, J. Phys. Chem. C 2016, 120, 10476.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  Y. Kuang, Z. Cai, Y. Zhang, D. He, X. Yan, Y. Bi, Y. Li, Z. Li, X. Sun, ACS Appl. Mater. Interfaces 2014, 6, 17748.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  J. Lai, L. Zhang, W. Qi, J. Zhao, M. Xu, W. Gao, G. Xu, ChemCatChem 2014, 6, 2253.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  D. Xu, S. Bliznakov, Z. Liu, J. Fang, N. Dimitrov, Angew. Chem. Int. Ed. 2010, 49, 1282.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  A. P. LaGrow, K. R. Knudsen, N. M. AlYami, D. H. Anjum, O. M. Bakr, Chem. Mater. 2015, 27, 4134.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  X. Sun, K. Jiang, N. Zhang, S. Guo, X. Huang, ACS Nano 2015, 9, 7634.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  Y. Jiang, Y. Jia, J. Zhang, L. Zhang, H. Huang, Z. Xie, L. Zheng, Chem. – Eur. J. 2013, 19, 3119.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  T. Liu, K. Wang, Q. Yuan, Z. B. Shen, Y. Wang, Q. H. Zhang, X. Wang, Nanoscale 2017, 9, 2963.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  E. Rubinov, M. Diab, M. Volokh, T. Mokari, CrystEngComm 2014, 16, 9493.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia, Science 2009, 324, 1302.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  Q. Yuan, D. B. Huang, H. H. Wang, Z. Y. Zhou, Langmuir 2014, 30, 5711.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  P. Kannan, J. Dolinska, T. Maiyalagan, M. Opallo, Nanoscale 2014, 6, 11169.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  J. Zeng, Q. Zhang, J. Chen, Y. Xia, Nano Lett. 2010, 10, 30.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  Y. Lin, Y. Yuan, R. Liu, S. Zhou, S. W. Sheehan, D. Wang, Chem. Phys. Lett. 2011, 507, 209.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  E. Taylor, S. Chen, J. Tao, L. Wu, Y. Zhu, J. Chen, ChemSusChem 2013, 6, 1863.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  M. Li, Z. Zhao, T. T. Cheng, A. Fortunelli, C. Y. Chen, R. Yu, Q. Zhang, L. Gu, B. V. Merinov, Science 2016, 354, 1414.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  Z. Zhang, Z. Luo, B. Chen, C. Wei, J. Zhao, J. Chen, X. L. Zhang, Z. Fan, Adv. Mater. 2016, 28, 8712.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  G. Xu, B. Wang, J. Zhu, F. Liu, Y. Chen, J. Zeng, J. Jiang, Z. Liu, Y. Tang, J. Lee, ACS Catal. 2016, 6, 5260.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  J. Lan, K. Wang, Q. Yuan, X. Wang, Mater. Chem. Front. 2017, 1, 1217.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  M. Xiao, S. Li, X. Zhao, J. Zhu, M. Yin, C. Liu, W. Xing, ChemCatChem 2014, 6, 2825.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  M. Gong, G. Fu, Y. Chen, Y. Tang, T. Lu, ACS Appl. Mater. Interfaces 2014, 6, 7301.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  X. Huang, Y. Chen, E. Zhu, Y. Xu, X. Duan, Y. Huang, J. Mater. Chem. A 2013, 1, 14449.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  L. Guo, L. B. Huang, W. J. Jiang, Z. D. Wei, L. J. Wan, J. S. Hu, J. Mater. Chem. A 2017, 5, 9014.
         | Crossref | GoogleScholarGoogle Scholar |