Hydrogen-Bonded Frameworks of Mercury(ii) Complexes with Pyridinedicarboxylic Acids
Željka Soldin A B , Boris-Marko Kukovec A B , Dubravka Matković-Čalogović A and Zora Popović AA Division of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia.
B Corresponding authors. Email: zeljka@chem.pmf.hr; borismarkokukovec@gmail.com
Australian Journal of Chemistry 71(6) 455-462 https://doi.org/10.1071/CH18146
Submitted: 6 April 2018 Accepted: 7 May 2018 Published: 29 May 2018
Abstract
Three novel mercury(ii) coordination compounds, [HgCl(2,4-pydcH2)(2,4-pydcH)]·2H2O (1) and [HgCl(2,6-pydcH)(H2O)]·3H2O (2) that exhibit hydrogen-bonded 3D frameworks, and [Hg(2,6-pydcH)2]·2H2O (3), exhibiting only hydrogen-bonded 1D chains (2,4-pydcH2 = pyridine-2,4-dicarboxylic acid; 2,6-pydcH2 = pyridine-2,6-dicarboxylic acid), were prepared in the reactions of the corresponding pyridinedicarboxylic acid with mercury(ii) chloride or mercury(ii) acetate. Compounds 1–3 were prepared by conventional solution synthesis. Only the hydrogen-bonded 1D chain of 3 was robust enough to be prepared by mechanochemical synthesis. The crystal structures of 1–3 were determined by the single-crystal X-ray diffraction method. Neutral 2,4-pydcH2 and partially deprotonated 2,4-pydcH− act as N,O-bidentate ligands in the structure of 1 whereas crystal structure analysis reveals O,N,O′-tridentate 2,6-pydcH− ligand in the structures of 2 and 3. Compounds 1–3 were characterised by IR spectroscopy in the solid state, and compounds 1 and 2 were also characterised by 1H and 13C NMR spectroscopy in DMSO solution. Thermal properties of 1–3 were also investigated. NMR data support a collapse of the hydrogen-bonded frameworks of 1 and 2 in DMSO solution, and the existence of monomeric species in DMSO solutions.
References
[1] Metallothioneins: Synthesis, Structure and Properties of Metallothioneins, Phytochelatins, and Metal–Thiolate Complexes (Eds M. J. Stillman, F. C. Shaw, K. T. Suzuki) 1992 (Wiley VCH Verlagsgessellschafts GmbH: Weinheim).[2] C. D. L. Saunders, N. Burford, U. Werner-Zwanziger, R. McDonald, Inorg. Chem. 2008, 47, 3693.
| Crossref | GoogleScholarGoogle Scholar |
[3] M. J. Adams, D. C. Hodgkin, U. A. Raeburn, J. Chem. Soc. A 1970, 2632.
| Crossref | GoogleScholarGoogle Scholar |
[4] D. Kalaiselvi, R. M. Kumar, R. Jayavel, Acta Crystallogr. 2008, E64, m1048.
[5] L. Book, A. J. Carty, C. Chieh, Can. J. Chem. 1981, 59, 138.
| Crossref | GoogleScholarGoogle Scholar |
[6] D. Matković-Čalogović, J. Popović, Z. Popović, I. Picek, Ž. Soldin, Acta Crystallogr. 2002, C58, m39.
[7] Z. Popović, G. Pavlović, D. Matković-Čalogović, Ž. Soldin, Acta Crystallogr. 2003, C59, m165.
[8] Z. Popović, G. Pavlović, Ž. Soldin, Acta Crystallogr. 2006, C62, m272.
[9] Z. Popović, D. Matković-Čalogović, J. Popović, I. Vicković, M. Vinković, D. Vikić-Topić, Polyhedron 2007, 26, 1045.
| Crossref | GoogleScholarGoogle Scholar |
[10] Ž. Soldin, D. Matković-Čalogović, G. Pavlović, J. Popović, M. Vinković, D. Vikić-Topić, Z. Popović, Polyhedron 2009, 28, 2735.
| Crossref | GoogleScholarGoogle Scholar |
[11] Ž. Soldin, B.-M. Kukovec, D. Matković-Čalogović, Z. Popović, J. Inorg. Organomet. Polym. 2018, in press.
| Crossref | GoogleScholarGoogle Scholar |
[12] D. Braga, L. Brammer, N. L. Champness, CrystEngComm 2005, 7, 1.
| Crossref | GoogleScholarGoogle Scholar |
[13] C. B. Aakeröy, J. Desper, J. Valdés-Martínez, CrystEngComm 2004, 6, 413.
| Crossref | GoogleScholarGoogle Scholar |
[14] Z. Chen, X. Wu, S. Qin, C. Lei, F. Liang, CrystEngComm 2011, 13, 2029.
| Crossref | GoogleScholarGoogle Scholar |
[15] A. W. Addison, T. Nageswara Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
| Crossref | GoogleScholarGoogle Scholar |
[16] S. Alvarez, Dalton Trans. 2013, 8617.
| Crossref | GoogleScholarGoogle Scholar |
[17] D. Milić, Ž. Soldin, G. Giester, Z. Popović, D. Matković-Čalogović, Croat. Chem. Acta 2009, 82, 337.
[18] L. Puntus, V. Zolin, V. Kudryashova, J. Alloys Compd. 2004, 374, 330.
| Crossref | GoogleScholarGoogle Scholar |
[19] R. F. Evans, W. Kynaston, J. Chem. Soc. 1962, 1005.
| Crossref | GoogleScholarGoogle Scholar |
[20] W. Brzyska, W. Ożga, Thermochim. Acta 1996, 273, 205.
| Crossref | GoogleScholarGoogle Scholar |
[21] W. Brzyska, W. Ożga, Thermochim. Acta 1994, 247, 329.
| Crossref | GoogleScholarGoogle Scholar |
[22] A. C. Gonzalez-Baró, E. E. Castellano, O. E. Piro, B. Parajón-Costa, Polyhedron 2005, 24, 49.
| Crossref | GoogleScholarGoogle Scholar |
[23] P. Gouverneur, W. Hoedeman, Anal. Chim. Acta 1964, 30, 519.
| Crossref | GoogleScholarGoogle Scholar |
[24] CrysAlis CCD and CrysAlis RED Version 1.171.32.29 2008 (Oxford Diffraction Ltd: Abingdon, UK).
[25] CrysAlisPro Version 1.171.38.46 2015 (Rigaku Oxford Diffraction Ltd: Yarnton, UK).
[26] G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.
[27] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst. 2008, 41, 466.
| Crossref | GoogleScholarGoogle Scholar |