Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Hydrogen-Bonded Frameworks of Mercury(ii) Complexes with Pyridinedicarboxylic Acids

Željka Soldin A B , Boris-Marko Kukovec A B , Dubravka Matković-Čalogović A and Zora Popović A
+ Author Affiliations
- Author Affiliations

A Division of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia.

B Corresponding authors. Email: zeljka@chem.pmf.hr; borismarkokukovec@gmail.com

Australian Journal of Chemistry 71(6) 455-462 https://doi.org/10.1071/CH18146
Submitted: 6 April 2018  Accepted: 7 May 2018   Published: 29 May 2018

Abstract

Three novel mercury(ii) coordination compounds, [HgCl(2,4-pydcH2)(2,4-pydcH)]·2H2O (1) and [HgCl(2,6-pydcH)(H2O)]·3H2O (2) that exhibit hydrogen-bonded 3D frameworks, and [Hg(2,6-pydcH)2]·2H2O (3), exhibiting only hydrogen-bonded 1D chains (2,4-pydcH2 = pyridine-2,4-dicarboxylic acid; 2,6-pydcH2 = pyridine-2,6-dicarboxylic acid), were prepared in the reactions of the corresponding pyridinedicarboxylic acid with mercury(ii) chloride or mercury(ii) acetate. Compounds 1–3 were prepared by conventional solution synthesis. Only the hydrogen-bonded 1D chain of 3 was robust enough to be prepared by mechanochemical synthesis. The crystal structures of 13 were determined by the single-crystal X-ray diffraction method. Neutral 2,4-pydcH2 and partially deprotonated 2,4-pydcH act as N,O-bidentate ligands in the structure of 1 whereas crystal structure analysis reveals O,N,O′-tridentate 2,6-pydcH ligand in the structures of 2 and 3. Compounds 13 were characterised by IR spectroscopy in the solid state, and compounds 1 and 2 were also characterised by 1H and 13C NMR spectroscopy in DMSO solution. Thermal properties of 13 were also investigated. NMR data support a collapse of the hydrogen-bonded frameworks of 1 and 2 in DMSO solution, and the existence of monomeric species in DMSO solutions.


References

[1]  Metallothioneins: Synthesis, Structure and Properties of Metallothioneins, Phytochelatins, and Metal–Thiolate Complexes (Eds M. J. Stillman, F. C. Shaw, K. T. Suzuki) 1992 (Wiley VCH Verlagsgessellschafts GmbH: Weinheim).

[2]  C. D. L. Saunders, N. Burford, U. Werner-Zwanziger, R. McDonald, Inorg. Chem. 2008, 47, 3693.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  M. J. Adams, D. C. Hodgkin, U. A. Raeburn, J. Chem. Soc. A 1970, 2632.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  D. Kalaiselvi, R. M. Kumar, R. Jayavel, Acta Crystallogr. 2008, E64, m1048.

[5]  L. Book, A. J. Carty, C. Chieh, Can. J. Chem. 1981, 59, 138.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  D. Matković-Čalogović, J. Popović, Z. Popović, I. Picek, Ž. Soldin, Acta Crystallogr. 2002, C58, m39.

[7]  Z. Popović, G. Pavlović, D. Matković-Čalogović, Ž. Soldin, Acta Crystallogr. 2003, C59, m165.

[8]  Z. Popović, G. Pavlović, Ž. Soldin, Acta Crystallogr. 2006, C62, m272.

[9]  Z. Popović, D. Matković-Čalogović, J. Popović, I. Vicković, M. Vinković, D. Vikić-Topić, Polyhedron 2007, 26, 1045.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  Ž. Soldin, D. Matković-Čalogović, G. Pavlović, J. Popović, M. Vinković, D. Vikić-Topić, Z. Popović, Polyhedron 2009, 28, 2735.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  Ž. Soldin, B.-M. Kukovec, D. Matković-Čalogović, Z. Popović, J. Inorg. Organomet. Polym. 2018, in press.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  D. Braga, L. Brammer, N. L. Champness, CrystEngComm 2005, 7, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  C. B. Aakeröy, J. Desper, J. Valdés-Martínez, CrystEngComm 2004, 6, 413.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Z. Chen, X. Wu, S. Qin, C. Lei, F. Liang, CrystEngComm 2011, 13, 2029.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  A. W. Addison, T. Nageswara Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S. Alvarez, Dalton Trans. 2013, 8617.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  D. Milić, Ž. Soldin, G. Giester, Z. Popović, D. Matković-Čalogović, Croat. Chem. Acta 2009, 82, 337.

[18]  L. Puntus, V. Zolin, V. Kudryashova, J. Alloys Compd. 2004, 374, 330.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  R. F. Evans, W. Kynaston, J. Chem. Soc. 1962, 1005.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  W. Brzyska, W. Ożga, Thermochim. Acta 1996, 273, 205.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  W. Brzyska, W. Ożga, Thermochim. Acta 1994, 247, 329.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  A. C. Gonzalez-Baró, E. E. Castellano, O. E. Piro, B. Parajón-Costa, Polyhedron 2005, 24, 49.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  P. Gouverneur, W. Hoedeman, Anal. Chim. Acta 1964, 30, 519.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  CrysAlis CCD and CrysAlis RED Version 1.171.32.29 2008 (Oxford Diffraction Ltd: Abingdon, UK).

[25]  CrysAlisPro Version 1.171.38.46 2015 (Rigaku Oxford Diffraction Ltd: Yarnton, UK).

[26]  G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.

[27]  C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst. 2008, 41, 466.
         | Crossref | GoogleScholarGoogle Scholar |